Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34740974

RESUMO

Intensive systems with two or three rice (Oryza sativa L.) crops per year account for about 50% of the harvested area for irrigated rice in Asia. Any reduction in productivity or sustainability of these systems has serious implications for global food security. Rice yield trends in the world's longest-running long-term continuous cropping experiment (LTCCE) were evaluated to investigate consequences of intensive cropping and to draw lessons for sustaining production in Asia. Annual production was sustained at a steady level over the 50-y period in the LTCCE through continuous adjustment of management practices and regular cultivar replacement. Within each of the three annual cropping seasons (dry, early wet, and late wet), yield decline was observed during the first phase, from 1968 to 1990. Agronomic improvements in 1991 to 1995 helped to reverse this yield decline, but yield increases did not continue thereafter from 1996 to 2017. Regular genetic and agronomic improvements were sufficient to maintain yields at steady levels in dry and early wet seasons despite a reduction in the yield potential due to changing climate. Yield declines resumed in the late wet season. Slower growth in genetic gain after the first 20 y was associated with slower breeding cycle advancement as indicated by pedigree depth. Our findings demonstrate that through adjustment of management practices and regular cultivar replacement, it is possible to sustain a high level of annual production in irrigated systems under a changing climate. However, the system was unable to achieve further increases in yield required to keep pace with the growing global rice demand.


Assuntos
Produção Agrícola/tendências , Grão Comestível/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Biomassa , Produção Agrícola/estatística & dados numéricos , Oryza/genética
2.
J Exp Bot ; 72(14): 5208-5220, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-33989419

RESUMO

By responding to the variable soil environments in which they are grown, the roots of rice crops are likely to contribute to yield stability across a range of soil moistures, nutrient levels, and establishment methods. In this study, we explored different approaches to quantification of root plasticity and characterization of its relationship with yield stability. Using four different statistical approaches (plasticity index, slope, AMMI, and factor analytic) on a set of 17 genotypes including several recently-developed breeding lines targeted to dry direct-seeding, we identified only very few direct relationships between root plasticity and yield stability. However, genotypes identified as having combined yield stability and root plasticity showed higher grain yields across trials. Furthermore, root plasticity was expressed to a greater degree in puddled transplanted trials rather than under dry direct-seeding. Significant interactions between nitrogen and water resulted in contrasting relationships between nitrogen-use efficiency and biomass stability between puddled-transplanted and direct-seeded conditions. These results reflect the complex interaction between nitrogen, drought, and even different types of drought (as a result of the establishment method) on rice root growth, and suggest that although rice root plasticity may confer stable yield across a range of environments, it might be necessary to more narrowly define the targeted environments to which it will be most beneficial.


Assuntos
Oryza , Secas , Grão Comestível , Oryza/genética , Melhoramento Vegetal , Sementes
3.
Rice (N Y) ; 12(1): 55, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31350673

RESUMO

BACKGROUND: While a multitude of genotyping platforms have been developed for rice, the majority of them have not been optimized for breeding where cost, turnaround time, throughput and ease of use, relative to density and informativeness are critical parameters of their utility. With that in mind we report the development of the 1K-Rice Custom Amplicon, or 1k-RiCA, a robust custom sequencing-based amplicon panel of ~ 1000-SNPs that are uniformly distributed across the rice genome, designed to be highly informative within indica rice breeding pools, and tailored for genomic prediction in elite indica rice breeding programs. RESULTS: Empirical validation tests performed on the 1k-RiCA showed average marker call rates of 95% with marker repeatability and concordance rates of 99%. These technical properties were not affected when two common DNA extraction protocols were used. The average distance between SNPs in the 1k-RiCA was 1.5 cM, similar to the theoretical distance which would be expected between 1,000 uniformly distributed markers across the rice genome. The average minor allele frequencies on a panel of indica lines was 0.36 and polymorphic SNPs estimated on pairwise comparisons between indica by indica accessions and indica by japonica accessions were on average 430 and 450 respectively. The specific design parameters of the 1k-RiCA allow for a detailed view of genetic relationships and unambiguous molecular IDs within indica accessions and good cost vs. marker-density balance for genomic prediction applications in elite indica germplasm. Predictive abilities of Genomic Selection models for flowering time, grain yield, and plant height were on average 0.71, 0.36, and 0.65 respectively based on cross-validation analysis. Furthermore the inclusion of important trait markers associated with 11 different genes and QTL adds value to parental selection in crossing schemes and marker-assisted selection in forward breeding applications. CONCLUSIONS: This study validated the marker quality and robustness of the 1k-RiCA genotypic platform for genotyping populations derived from indica rice subpopulation for genetic and breeding purposes including MAS and genomic selection. The 1k-RiCA has proven to be an alternative cost-effective genotyping system for breeding applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...