Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 1410, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179743

RESUMO

The heat shock protein 90 (Hsp90) is a molecular chaperone that employs the free energy of ATP hydrolysis to control the folding and activation of several client proteins in the eukaryotic cell. To elucidate how the local ATPase reaction in the active site couples to the global conformational dynamics of Hsp90, we integrate here large-scale molecular simulations with biophysical experiments. We show that the conformational switching of conserved ion pairs between the N-terminal domain, harbouring the active site, and the middle domain strongly modulates the catalytic barrier of the ATP-hydrolysis reaction by electrostatic forces. Our combined findings provide a mechanistic model for the coupling between catalysis and protein dynamics in Hsp90, and show how long-range coupling effects can modulate enzymatic activity.


Assuntos
Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Peixe-Zebra/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Biocatálise , Proteínas de Choque Térmico HSP90/genética , Hidrólise , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Peixe-Zebra/genética
2.
Mol Cell ; 74(1): 73-87.e8, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30876805

RESUMO

The Hsp90 chaperone machinery in eukaryotes comprises a number of distinct accessory factors. Cns1 is one of the few essential co-chaperones in yeast, but its structure and function remained unknown. Here, we report the X-ray structure of the Cns1 fold and NMR studies on the partly disordered, essential segment of the protein. We demonstrate that Cns1 is important for maintaining translation elongation, specifically chaperoning the elongation factor eEF2. In this context, Cns1 interacts with the novel co-factor Hgh1 and forms a quaternary complex together with eEF2 and Hsp90. The in vivo folding and solubility of eEF2 depend on the presence of these proteins. Chaperoning of eEF2 by Cns1 is essential for yeast viability and requires a defined subset of the Hsp90 machinery as well as the identified eEF2 recruiting factor Hgh1.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Chaperonas Moleculares/metabolismo , Elongação Traducional da Cadeia Peptídica , Fator 2 de Elongação de Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cristalografia por Raios X , Peptidil-Prolil Isomerase F , Ciclofilinas/genética , Ciclofilinas/metabolismo , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Ressonância Magnética Nuclear Biomolecular , Fator 2 de Elongação de Peptídeos/química , Fator 2 de Elongação de Peptídeos/genética , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade
3.
ACS Chem Biol ; 13(8): 2288-2299, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29893552

RESUMO

Genetic and epigenetic alterations in FK506-binding protein 5 ( FKBP5) have been associated with increased risk for psychiatric disorders, including post-traumatic stress disorder (PTSD). Some of these common variants can increase the expression of FKBP5, the gene that encodes FKBP51. Excess FKBP51 promotes hypothalamic-pituitary-adrenal (HPA) axis dysregulation through altered glucocorticoid receptor (GR) signaling. Thus, we hypothesized that GR activity could be restored by perturbing FKBP51. Here, we screened 1280 pharmacologically active compounds and identified three compounds that rescued FKBP51-mediated suppression of GR activity without directly activating GR. One of the three compounds, benztropine mesylate, disrupted the association of FKBP51 with the GR/Hsp90 complex in vitro. Moreover, we show that removal of FKBP51 from this complex by benztropine restored GR localization in ex vivo brain slices and primary neurons from mice. In conclusion, we have identified a novel disruptor of the FKBP51/GR/Hsp90 complex. Targeting this complex may be a viable approach to developing treatments for disorders related to aberrant FKBP51 expression.


Assuntos
Benzotropina/farmacologia , Depressão/tratamento farmacológico , Proteínas de Choque Térmico HSP90/metabolismo , Receptores de Glucocorticoides/metabolismo , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Benzotropina/química , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células Cultivadas , Depressão/metabolismo , Descoberta de Drogas , Humanos , Camundongos , Terapia de Alvo Molecular , Ligação Proteica/efeitos dos fármacos , Transtornos de Estresse Pós-Traumáticos/metabolismo , Proteínas de Ligação a Tacrolimo/antagonistas & inibidores
4.
Mol Cell ; 67(6): 947-961.e5, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28890336

RESUMO

The Hsp90 system in the eukaryotic cytosol is characterized by a cohort of co-chaperones that bind to Hsp90 and affect its function. Although progress has been made regarding the underlying biochemical mechanisms, how co-chaperones influence Hsp90 client proteins in vivo has remained elusive. By investigating the effect of 12 Hsp90 co-chaperones on the activity of different client proteins in yeast, we find that deletion of co-chaperones can have a neutral or negative effect on client activity but can also lead to more active clients. Only a few co-chaperones are active on all clients studied. Closely related clients and even point mutants can depend on different co-chaperones. These effects are direct because differences in client-co-chaperone interactions can be reconstituted in vitro. Interestingly, some co-chaperones affect client conformation in vivo. Thus, co-chaperones adapt the Hsp90 cycle to the requirements of the client proteins, ensuring optimal activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Plasticidade Celular , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Genótipo , Proteínas de Choque Térmico HSP90/genética , Mutação , Proteína Oncogênica pp60(v-src)/genética , Proteína Oncogênica pp60(v-src)/metabolismo , Fenótipo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
5.
Nat Struct Mol Biol ; 23(11): 1020-1028, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27723736

RESUMO

Hsp90 couples ATP hydrolysis to large conformational changes essential for activation of client proteins. The structural transitions involve dimerization of the N-terminal domains and formation of 'closed states' involving the N-terminal and middle domains. Here, we used Hsp90 mutants that modulate ATPase activity and biological function as probes to address the importance of conformational cycling for Hsp90 activity. We found no correlation between the speed of ATP turnover and the in vivo activity of Hsp90: some mutants with almost normal ATPase activity were lethal, and some mutants with lower or undetectable ATPase activity were viable. Our analysis showed that it is crucial for Hsp90 to attain and spend time in certain conformational states: a certain dwell time in open states is required for optimal processing of client proteins, whereas a prolonged population of closed states has negative effects. Thus, the timing of conformational transitions is crucial for Hsp90 function and not cycle speed.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Modelos Moleculares , Mutação Puntual , Conformação Proteica , Domínios Proteicos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
6.
Sci Rep ; 5: 17058, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26593036

RESUMO

Protein phosphatase 5 is involved in the regulation of kinases and transcription factors. The dephosphorylation activity is modulated by the molecular chaperone Hsp90, which binds to the TPR-domain of protein phosphatase 5. This interaction is dependent on the C-terminal MEEVD motif of Hsp90. We show that C-terminal Hsp90 fragments differ in their regulation of the phosphatase activity hinting to a more complex interaction. Also hydrodynamic parameters from analytical ultracentrifugation and small-angle X-ray scattering data suggest a compact structure for the Hsp90-protein phosphatase 5 complexes. Using crosslinking experiments coupled with mass spectrometric analysis and structural modelling we identify sites, which link the middle/C-terminal domain interface of C. elegans Hsp90 to the phosphatase domain of the corresponding kinase. Studying the relevance of the domains of Hsp90 for turnover of native substrates we find that ternary complexes with the glucocorticoid receptor (GR) are cooperatively formed by full-length Hsp90 and PPH-5. Our data suggest that the direct stimulation of the phosphatase activity by C-terminal Hsp90 fragments leads to increased dephosphorylation rates. These are further modulated by the binding of clients to the N-terminal and middle domain of Hsp90 and their presentation to the phosphatase within the phosphatase-Hsp90 complex.


Assuntos
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Proteínas de Choque Térmico HSP90/química , Proteínas Nucleares/química , Fosfoproteínas Fosfatases/química , Receptores de Glucocorticoides/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Expressão Gênica , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Biochemistry ; 53(15): 2505-14, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24660900

RESUMO

Heat shock protein 90 (Hsp90) is a highly conserved ATP-driven machine involved in client protein maturation, folding, and activation. The chaperone is supported by a set of cochaperones that confer client specificities. One of those proteins is the suppressor of G2 allele of skp1 (Sgt1), which participates together with Hsp90 in the immune responses of plants. Sgt1 consists of three domains: a TPR-, CS-, and SGS-domain, conserved in plants, yeast, and humans. The TPR-domain though is lacking in nematodes and insects. We observe that the Caenorhabditis elegans Sgt1 homologue D1054.3 binds to Hsp90 in the absence of nucleotides but much stronger in the presence of ATP and ATPγS. The latter binding mode is similar to p23, another CS-domain containing Hsp90 cofactor, even though binding is not observable for p23 in the absence of nucleotides. We use point mutations in Hsp90, which accumulate different conformations in the ATPase cycle, to differentiate between binding to open and closed Hsp90 conformations. These data support a strong contribution of the Hsp90 conformation to Sgt1 binding and highlight the ability of this cofactor to interact with all known Hsp90 conformations albeit with different affinities.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Animais , Sítios de Ligação , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Corantes Fluorescentes , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Mutação Puntual , Conformação Proteica , Estabilidade Proteica
8.
J Biol Chem ; 288(22): 16032-42, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23569206

RESUMO

The ATPase-driven dimeric molecular Hsp90 (heat shock protein 90) and its cofactor Cdc37 (cell division cycle 37 protein) are crucial to prevent the cellular depletion of many protein kinases. In complex with Hsp90, Cdc37 is thought to bind an important lid structure in the ATPase domain of Hsp90 and inhibit ATP turnover by Hsp90. As different interaction modes have been reported, we were interested in the interaction mechanism of Hsp90 and Cdc37. We find that Cdc37 can bind to one subunit of the Hsp90 dimer. The inhibition of the ATPase activity is caused by a reduction in the closing rate of Hsp90 without obviously bridging the two subunits or affecting nucleotide accessibility to the binding site. Although human Cdc37 binds to the N-terminal domain of Hsp90, nematodal Cdc37 preferentially interacts with the middle domain of CeHsp90 and hHsp90, exposing two Cdc37 interaction sites. A previously unreported site in CeCdc37 is utilized for the middle domain interaction. Dephosphorylation of CeCdc37 by the Hsp90-associated phosphatase PPH-5, a step required during the kinase activation process, proceeds normally, even if only the new interaction site is used. This shows that the second interaction site is also functionally relevant and highlights that Cdc37, similar to the Hsp90 cofactors Sti1 and Aha1, may utilize two different attachment sites to restrict the conformational freedom and the ATP turnover of Hsp90.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Ciclo Celular/química , Chaperoninas/química , Proteínas de Choque Térmico HSP90/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Sítios de Ligação , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chaperoninas/genética , Chaperoninas/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...