Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 30(1): 52-61, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36522427

RESUMO

Volume-regulated anion channels (VRACs) participate in the cellular response to osmotic swelling. These membrane proteins consist of heteromeric assemblies of LRRC8 subunits, whose compositions determine permeation properties. Although structures of the obligatory LRRC8A, also referred to as SWELL1, have previously defined the architecture of VRACs, the organization of heteromeric channels has remained elusive. Here we have addressed this question by the structural characterization of murine LRRC8A/C channels. Like LRRC8A, these proteins assemble as hexamers. Despite 12 possible arrangements, we find a predominant organization with an A:C ratio of two. In this assembly, four LRRC8A subunits cluster in their preferred conformation observed in homomers, as pairs of closely interacting proteins that stabilize a closed state of the channel. In contrast, the two interacting LRRC8C subunits show a larger flexibility, underlining their role in the destabilization of the tightly packed A subunits, thereby enhancing the activation properties of the protein.


Assuntos
Proteínas de Membrana , Camundongos , Animais , Proteínas de Membrana/metabolismo , Ânions/metabolismo
2.
Nat Commun ; 13(1): 2798, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589730

RESUMO

TMEM16A, a calcium-activated chloride channel involved in multiple cellular processes, is a proposed target for diseases such as hypertension, asthma, and cystic fibrosis. Despite these therapeutic promises, its pharmacology remains poorly understood. Here, we present a cryo-EM structure of TMEM16A in complex with the channel blocker 1PBC and a detailed functional analysis of its inhibition mechanism. A pocket located external to the neck region of the hourglass-shaped pore is responsible for open-channel block by 1PBC and presumably also by its structural analogs. The binding of the blocker stabilizes an open-like conformation of the channel that involves a rearrangement of several pore helices. The expansion of the outer pore enhances blocker sensitivity and enables 1PBC to bind at a site within the transmembrane electric field. Our results define the mechanism of inhibition and gating and will facilitate the design of new, potent TMEM16A modulators.


Assuntos
Cálcio , Canais de Cloreto , Anoctamina-1/genética , Anoctamina-1/metabolismo , Cálcio/metabolismo , Canais de Cloreto/metabolismo
3.
Nat Commun ; 12(1): 5435, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521847

RESUMO

Members of the LRRC8 family form heteromeric assemblies, which function as volume-regulated anion channels. These modular proteins consist of a transmembrane pore and cytoplasmic leucine-rich repeat (LRR) domains. Despite their known molecular architecture, the mechanism of activation and the role of the LRR domains in this process has remained elusive. Here we address this question by generating synthetic nanobodies, termed sybodies, which target the LRR domain of the obligatory subunit LRRC8A. We use these binders to investigate their interaction with homomeric LRRC8A channels by cryo-electron microscopy and the consequent effect on channel activation by electrophysiology. The five identified sybodies either inhibit or enhance activity by binding to distinct epitopes of the LRR domain, thereby altering channel conformations. In combination, our work provides a set of specific modulators of LRRC8 proteins and reveals the role of their cytoplasmic domains as regulators of channel activity by allosteric mechanisms.


Assuntos
Epitopos/química , Canais Iônicos/química , Proteínas de Membrana/química , Anticorpos de Domínio Único/química , Regulação Alostérica , Sítio Alostérico , Sequência de Aminoácidos , Animais , Clonagem Molecular , Epitopos/genética , Epitopos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Transporte de Íons , Cinética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/metabolismo , Especificidade por Substrato
4.
Elife ; 72018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29809155

RESUMO

Cdc48 is a AAA+ ATPase that plays an essential role for many cellular processes in eukaryotic cells. An archaeal homologue of this highly conserved enzyme was shown to directly interact with the 20S proteasome. Here, we analyze the occurrence and phylogeny of a Cdc48 homologue in Actinobacteria and assess its cellular function and possible interaction with the bacterial proteasome. Our data demonstrate that Cdc48-like protein of actinobacteria (Cpa) forms hexameric rings and that the oligomeric state correlates directly with the ATPase activity. Furthermore, we show that the assembled Cpa rings can physically interact with the 20S core particle. Comparison of the Mycobacterium smegmatis wild-type with a cpa knockout strain under carbon starvation uncovers significant changes in the levels of around 500 proteins. Pathway mapping of the observed pattern of changes identifies ribosomal proteins as a particular hotspot, pointing amongst others toward a role of Cpa in ribosome adaptation during starvation.


Assuntos
Actinobacteria/enzimologia , Proteínas de Bactérias/metabolismo , Mycobacterium/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína com Valosina/metabolismo , Adaptação Fisiológica , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Mycobacterium/classificação , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/genética , Proteína com Valosina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA