Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(10): 2351-2366, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36877868

RESUMO

Ammonia (NH3) is a promising fuel, because it is carbon-free and easier to store and transport than hydrogen (H2). However, an ignition enhancer such as H2 might be needed for technical applications, because of the rather poor ignition properties of NH3. The combustion of pure NH3 and H2 has been explored widely. However, for mixtures of both gases, mostly only global parameters such as ignition delay times or flame speeds were reported. Studies with extensive experimental species profiles are scarce. Therefore, we experimentally investigated the interactions in the oxidation of different NH3/H2 mixtures in the temperature range of 750-1173 K at 0.97 bar in a plug-flow reactor (PFR), as well as in the temperature range of 1615-2358 K with an average pressure of 3.16 bar in a shock tube. In the PFR, temperature-dependent mole fraction profiles of the main species were obtained via electron ionization molecular-beam mass spectrometry (EI-MBMS). Additionally, for the first time, tunable diode laser absorption spectroscopy (TDLAS) with a scanned-wavelength method was adapted to the PFR for the quantification of nitric oxide (NO). In the shock tube, time-resolved NO profiles were also measured by TDLAS using a fixed-wavelength approach. The experimental results both in PFR and shock tube reveal the reactivity enhancement by H2 on ammonia oxidation. The extensive sets of results were compared with predictions by four NH3-related reaction mechanisms. None of the mechanisms can well predict all experimental results, but the Stagni et al. [React. Chem. Eng. 2020, 5, 696-711] and Zhu et al. [Combust. Flame 2022, 246, 115389] mechanisms perform best for the PFR and shock tube conditions, respectively. Exploratory kinetic analysis was conducted to identify the effect of H2 addition on ammonia oxidation and NO formation, as well as sensitive reactions in different temperature regimes. The results presented in this study can provide valuable information for further model development and highlight relevant properties of H2-assisted NH3 combustion.

2.
Phys Chem Chem Phys ; 20(16): 10780-10795, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29392266

RESUMO

In this study, we experimentally investigate the high-temperature oxidation kinetics of n-pentane, 1-pentene and 2-methyl-2-butene (2M2B) in a combustion environment using flame-sampling molecular beam mass spectrometry. The selected C5 fuels are prototypes for linear and branched, saturated and unsaturated fuel components, featuring different C-C and C-H bond structures. It is shown that the formation tendency of species, such as polycyclic aromatic hydrocarbons (PAHs), yielded through mass growth reactions increases drastically in the sequence n-pentane < 1-pentene < 2M2B. This comparative study enables valuable insights into fuel-dependent reaction sequences of the gas-phase combustion mechanism that provide explanations for the observed difference in the PAH formation tendency. First, we investigate the fuel-structure-dependent formation of small hydrocarbon species that are yielded as intermediate species during the fuel decomposition, because these species are at the origin of the subsequent mass growth reaction pathways. Second, we review typical PAH formation reactions inspecting repetitive growth sequences in dependence of the molecular fuel structure. Third, we discuss how differences in the intermediate species pool influence the formation reactions of key aromatic ring species that are important for the PAH growth process underlying soot formation. As a main result it was found that for the fuels featuring a C[double bond, length as m-dash]C double bond, the chemistry of their allylic fuel radicals and their decomposition products strongly influences the combination reactions to the initially formed aromatic ring species and as a consequence, the PAH formation tendency.

3.
J Phys Chem A ; 120(40): 7890-7901, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27641828

RESUMO

This work provides new temperature-dependent mole fractions of elusive intermediates relevant to the low-temperature oxidation of dimethyl ether (DME). It extends the previous study of Moshammer et al. [ J. Phys. Chem. A 2015 , 119 , 7361 - 7374 ] in which a combination of a jet-stirred reactor and molecular beam mass spectrometry with single-photon ionization via tunable synchrotron-generated vacuum-ultraviolet radiation was used to identify (but not quantify) several highly oxygenated species. Here, temperature-dependent concentration profiles of 17 components were determined in the range of 450-1000 K and compared to up-to-date kinetic modeling results. Special emphasis is paid toward the validation and application of a theoretical method for predicting photoionization cross sections that are hard to obtain experimentally but essential to turn mass spectral data into mole fraction profiles. The presented approach enabled the quantification of the hydroperoxymethyl formate (HOOCH2OCH2O), which is a key intermediate in the low-temperature oxidation of DME. The quantification of this keto-hydroperoxide together with the temperature-dependent concentration profiles of other intermediates including H2O2, HCOOH, CH3OCHO, and CH3OOH reveals new opportunities for the development of a next-generation DME combustion chemistry mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...