Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Indoor Air ; 32(11): e13144, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36437669

RESUMO

Indoor air in residential dwellings can contain a variety of chemicals, sometimes present at concentrations or in combinations which can have a negative impact on human health. Indoor Air Quality (IAQ) surveys are often required to characterize human exposure or to investigate IAQ concerns and complaints. Such surveys should include sufficient contextual information to elucidate sources, pathways, and the magnitude of exposures. The aim of this review was to investigate and describe the parameters that affect IAQ in residential dwellings: building location, layout, and ventilation, finishing materials, occupant activities, and occupant demography. About 180 peer-reviewed articles, published from 01/2013 to 09/2021 (plus some important earlier publications), were reviewed. The importance of the building parameters largely depends on the study objectives and whether the focus is on a specific pollutant or to assess health risk. When considering classical pollutants such as particulate matter (PM) or volatile organic compounds (VOCs), the building parameters can have a significant impact on IAQ, and detailed information of these parameters needs to be reported in each study. Research gaps and suggestions for the future studies together with recommendation of where measurements should be done are also provided.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Ambientais , Humanos , Poluição do Ar em Ambientes Fechados/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise
2.
J Nanosci Nanotechnol ; 19(11): 6949-6955, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31039846

RESUMO

Infection is one of the major factors affecting wound healing. The use of polymeric fibrous constructs or scaffolds with encapsulated biologically active components has shown great potential in topical wound care as wound dressings to expedite wound healing process; however, there is a limitation in precise control over the release of active components. Therefore, in this study, the authors developed a facile method for controlled fabrication of poly(-caprolactone) (PCL) microfibrous constructs with silver (Ag) nanoparticles as antibacterial agent by single capillary electrospinning. By optimizing spinning parameters, the PCL microfibrous constructs were fabricated. The encapsulation of Ag nanoparticles within the PCL microfibers was confirmed using microstructural analysis. The encapsulation efficacy and release profile of Ag was evaluated in vitro. The diffusion study further revealed the controlled release and optimal bioavailability of Ag during the experimental period. in vitro assessment of antibacterial activity of electrospun hybrid constructs showed a high antibacterial activity and an inhibitory effect on the growth of both staphylococcus aureus and escherichia coli bacteria when compared to PCL and their efficiency of antibacterial activity also varied with respect to the percent of encapsulated Ag nanoparticles. This kind of Ag nanoparticles-loaded PCL microfibrous constructs may be considered for wound care applications.


Assuntos
Nanopartículas Metálicas , Prata , Antibacterianos/farmacologia , Caproatos , Lactonas , Poliésteres/farmacologia , Prata/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...