Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 5(2): 102948, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642337

RESUMO

Pre-clinical studies developing novel therapies to prevent cancer recurrence require appropriate surgical models. Here, we present a protocol for surgical debulking of subcutaneous tumors in mice, which allows for intraoperative application of immunotherapy-loaded biomaterials. We describe steps for inoculating tumor cells, anesthetizing mice, and performing surgery. We then detail procedures for applying biomaterial, bandaging mice, and data collection and analysis. The optimized bandaging regimen resolves the issue of wound dehiscence after surgery, for C57BL/6 mice, which interfere with surgical sites. For complete details on the use and execution of this protocol, please refer to Rwandamuriye et al.1.

2.
Cell Rep Med ; 4(7): 101113, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37467718

RESUMO

Recurrences frequently occur following surgical removal of primary tumors. In many cancers, adjuvant therapies have limited efficacy. Surgery provides access to the tumor microenvironment, creating an opportunity for local therapy, in particular immunotherapy, which can induce local and systemic anti-cancer effects. Here, we develop a surgically optimized biodegradable hyaluronic acid-based hydrogel for sustained intraoperative delivery of Toll-like receptor 3 agonist poly(I:C) and demonstrate that it significantly reduces tumor recurrence after surgery in multiple mouse models. Mechanistically, poly(I:C) induces a transient interferon alpha (IFNα) response, reshaping the tumor/wound microenvironment by attracting inflammatory monocytes and depleting regulatory T cells. We demonstrate that a pre-existing IFN signature predicts response to the poly(I:C) hydrogel, which sensitizes tumors to immune checkpoint therapy. The safety, immunogenicity, and surgical feasibility are confirmed in a veterinary trial in canine soft tissue tumors. The surgically optimized poly(I:C)-loaded hydrogel provides a safe and effective approach to prevent cancer recurrence.


Assuntos
Hidrogéis , Recidiva Local de Neoplasia , Camundongos , Animais , Cães , Hidrogéis/uso terapêutico , Recidiva Local de Neoplasia/prevenção & controle , Imunoterapia , Modelos Animais de Doenças , Microambiente Tumoral
3.
Commun Biol ; 5(1): 133, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173258

RESUMO

Pre-existing pathogen-specific memory T cell responses can contribute to multiple adverse outcomes including autoimmunity and drug hypersensitivity. How the specificity of the T cell receptor (TCR) is subverted or seconded in many of these diseases remains unclear. Here, we apply abacavir hypersensitivity (AHS) as a model to address this question because the disease is linked to memory T cell responses and the HLA risk allele, HLA-B*57:01, and the initiating insult, abacavir, are known. To investigate the role of pathogen-specific TCR specificity in mediating AHS we performed a genome-wide screen for HLA-B*57:01 restricted T cell responses to Epstein-Barr virus (EBV), one of the most prevalent human pathogens. T cell epitope mapping revealed HLA-B*57:01 restricted responses to 17 EBV open reading frames and identified an epitope encoded by EBNA3C. Using these data, we cloned the dominant TCR for EBNA3C and a previously defined epitope within EBNA3B. TCR specificity to each epitope was confirmed, however, cloned TCRs did not cross-react with abacavir plus self-peptide. Nevertheless, abacavir inhibited TCR interactions with their cognate ligands, demonstrating that TCR specificity may be subverted by a drug molecule. These results provide an experimental road map for future studies addressing the heterologous immune responses of TCRs including T cell mediated adverse drug reactions.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Didesoxinucleosídeos , Epitopos de Linfócito T , Antígenos HLA-B , Herpesvirus Humano 4/genética , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Complemento 3d
4.
J Vis Exp ; (161)2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32804161

RESUMO

Surgery is often the first treatment for many solid tumors. However, local relapses frequently occur following primary tumor resection, despite adjuvant or neo-adjuvant therapies. This occurs when surgical margins are insufficiently tumor-free, resulting in residual cancer cells. From a biological and immunological perspective, surgery is not a null event; the wound healing environment is known to induce both pro- and anti-tumorigenic pathways. As a consequence, preclinical models for drug development aimed at preventing local relapse should incorporate surgical resection when testing new (neo)adjuvant therapies, to model the clinical settings in patients treated with surgery. Here, we describe a mouse model of incomplete surgical resection of WEHI 164 soft tissue sarcoma that allows testing of (neo)adjuvant therapies in the setting of a wound healing response. In this model, 50% or 75% of the tumor is removed, leaving behind some cancer tissue in situ to model gross residual disease after surgery in the clinical setting. This model allows testing therapies in the context of surgery while also considering the wound healing response, which may affect the efficacy of (neo)adjuvant treatments. The incomplete surgical resection results in reproducible regrowth of the tumor in all mice in the absence of adjuvant therapy. Adjuvant treatment with checkpoint blockade results in reduced tumor regrowth. This model is thus appropriate for testing therapies in the context of debulking surgery and its associated wound healing response and can be extended to other types of solid cancer.


Assuntos
Terapia Neoadjuvante , Sarcoma/terapia , Animais , Terapia Combinada , Procedimentos Cirúrgicos de Citorredução , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Endogâmicos BALB C , Recidiva Local de Neoplasia/patologia , Sarcoma/patologia , Sarcoma/cirurgia , Cicatrização
6.
J Mol Diagn ; 21(5): 782-789, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31158526

RESUMO

Human leukocyte antigen (HLA) alleles have been implicated as risk factors for immune-mediated adverse drug reactions. The authors recently reported a strong association between HLA-A*32:01 and vancomycin-induced drug reaction with eosinophilia and systemic symptoms. Identification of individuals with the risk allele before or shortly after the initiation of vancomycin therapy is of great clinical importance to prevent morbidity and mortality, and improve drug safety and antibiotic treatment options. A prerequisite to the success of pharmacogenetic screening tests is the development of simple, robust, cost-effective single HLA allele test that can be implemented in routine diagnostic laboratories. In this study, the authors developed a simple, real-time allele-specific PCR for typing the HLA-A*32:01 allele. Four-hundred and fifty-eight DNA samples including 30 HLA-A*32:01-positive samples were typed by allele-specific PCR. Compared with American Society for Histocompatibility and Immunogenetics-accredited, sequence-based, high-resolution, full-allelic HLA typing, this assay demonstrates 100% accuracy, 100% sensitivity (95% CI, 88.43% to 100%), and 100% specificity (95% CI, 99.14% to 100%). The lowest limit of detection of this assay using PowerUp SYBR Green is 10 ng of template DNA. The assay demonstrates a sensitivity and specificity to differentiate the HLA-A*32:01 allele from closely related non-HLA-A*32 alleles and may be used in clinical settings to identify individuals with the risk allele before or during the course of vancomycin therapy.


Assuntos
Antibacterianos/efeitos adversos , Síndrome de Hipersensibilidade a Medicamentos/diagnóstico , Eosinofilia/diagnóstico , Testes Genéticos/métodos , Antígenos HLA-A/genética , Vancomicina/efeitos adversos , Alelos , Sequência de Bases , Síndrome de Hipersensibilidade a Medicamentos/etiologia , Síndrome de Hipersensibilidade a Medicamentos/genética , Eosinofilia/induzido quimicamente , Eosinofilia/genética , Humanos , Reação em Cadeia da Polimerase , Homologia de Sequência
7.
J Allergy Clin Immunol ; 144(1): 183-192, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30776417

RESUMO

BACKGROUND: Vancomycin is a prevalent cause of the severe hypersensitivity syndrome drug reaction with eosinophilia and systemic symptoms (DRESS), which leads to significant morbidity and mortality and commonly occurs in the setting of combination antibiotic therapy, affecting future treatment choices. Variations in HLA class I in particular have been associated with serious T cell-mediated adverse drug reactions, which has led to preventive screening strategies for some drugs. OBJECTIVE: We sought to determine whether variation in the HLA region is associated with vancomycin-induced DRESS. METHODS: Probable vancomycin-induced DRESS cases were matched 1:2 with tolerant control subjects based on sex, race, and age by using BioVU, Vanderbilt's deidentified electronic health record database. Associations between DRESS and carriage of HLA class I and II alleles were assessed by means of conditional logistic regression. An extended sample set from BioVU was used to conduct a time-to-event analysis of those exposed to vancomycin with and without the identified HLA risk allele. RESULTS: Twenty-three subjects met the inclusion criteria for vancomycin-associated DRESS. Nineteen (82.6%) of 23 cases carried HLA-A*32:01 compared with 0 (0%) of 46 of the matched vancomycin-tolerant control subjects (P = 1 × 10-8) and 6.3% of the BioVU population (n = 54,249, P = 2 × 10-16). Time-to-event analysis of DRESS development during vancomycin treatment among the HLA-A*32:01-positive group indicated that 19.2% had DRESS and did so within 4 weeks. CONCLUSIONS: HLA-A*32:01 is strongly associated with vancomycin-induced DRESS in a population of predominantly European ancestry. HLA-A*32:01 testing could improve antibiotic safety, help implicate vancomycin as the causal drug, and preserve future treatment options with coadministered antibiotics.


Assuntos
Antibacterianos/efeitos adversos , Síndrome de Hipersensibilidade a Medicamentos/imunologia , Antígenos HLA-A/imunologia , Vancomicina/efeitos adversos , Adolescente , Adulto , Idoso , Antibacterianos/química , Síndrome de Hipersensibilidade a Medicamentos/etiologia , Feminino , Antígenos HLA-A/química , Humanos , Masculino , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Vancomicina/química , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...