Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glia ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856149

RESUMO

Most excitatory synapses in the mammalian brain are contacted or ensheathed by astrocyte processes, forming tripartite synapses. Astrocytes are thought to be critical regulators of the structural and functional dynamics of synapses. While the degree of synaptic coverage by astrocytes is known to vary across brain regions and animal species, the reason for and implications of this variability remains unknown. Further, how astrocyte coverage of synapses relates to in vivo functional properties of individual synapses has not been investigated. Here, we characterized astrocyte coverage of synapses of pyramidal neurons in the ferret visual cortex and, using correlative light and electron microscopy, examined their relationship to synaptic strength and sensory-evoked Ca2+ activity. Nearly, all synapses were contacted by astrocytes, and most were contacted along the axon-spine interface. Structurally, we found that the degree of synaptic astrocyte coverage directly scaled with synapse size and postsynaptic density complexity. Functionally, we found that the amount of astrocyte coverage scaled with how selectively a synapse responds to a particular visual stimulus and, at least for the largest synapses, scaled with the reliability of visual stimuli to evoke postsynaptic Ca2+ events. Our study shows astrocyte coverage is highly correlated with structural metrics of synaptic strength of excitatory synapses in the visual cortex and demonstrates a previously unknown relationship between astrocyte coverage and reliable sensory activation.

2.
Elife ; 122023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38059805

RESUMO

Postsynaptic mitochondria are critical for the development, plasticity, and maintenance of synaptic inputs. However, their relationship to synaptic structure and functional activity is unknown. We examined a correlative dataset from ferret visual cortex with in vivo two-photon calcium imaging of dendritic spines during visual stimulation and electron microscopy reconstructions of spine ultrastructure, investigating mitochondrial abundance near functionally and structurally characterized spines. Surprisingly, we found no correlation to structural measures of synaptic strength. Instead, we found that mitochondria are positioned near spines with orientation preferences that are dissimilar to the somatic preference. Additionally, we found that mitochondria are positioned near groups of spines with heterogeneous orientation preferences. For a subset of spines with a mitochondrion in the head or neck, synapses were larger and exhibited greater selectivity to visual stimuli than those without a mitochondrion. Our data suggest mitochondria are not necessarily positioned to support the energy needs of strong spines, but rather support the structurally and functionally diverse inputs innervating the basal dendrites of cortical neurons.


Assuntos
Espinhas Dendríticas , Furões , Animais , Espinhas Dendríticas/fisiologia , Dendritos/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Mitocôndrias
3.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38106030

RESUMO

Most excitatory synapses in the mammalian brain are contacted by astrocytes, forming the tripartite synapse. This interface is thought to be critical for glutamate turnover and structural or functional dynamics of synapses. While the degree of synaptic contact of astrocytes is known to vary across brain regions and animal species, the implications of this variability remain unknown. Furthermore, precisely how astrocyte coverage of synapses relates to in vivo functional properties of individual dendritic spines has yet to be investigated. Here, we characterized perisynaptic astrocyte processes (PAPs) contacting synapses of pyramidal neurons of the ferret visual cortex and, using correlative light and electron microscopy, examined their relationship to synaptic strength and to sensory-evoked Ca2+ activity. Nearly all synapses were contacted by PAPs, and most were contacted along the axon-spine interface (ASI). Structurally, we found that the degree of PAP coverage scaled with synapse size and complexity. Functionally, we found that PAP coverage scaled with the selectivity of Ca2+ responses of individual synapses to visual stimuli and, at least for the largest synapses, scaled with the reliability of visual stimuli to evoke postsynaptic Ca2+ events. Our study shows astrocyte coverage is highly correlated with structural properties of excitatory synapses in the visual cortex and implicates astrocytes as a contributor to reliable sensory activation.

4.
bioRxiv ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37502969

RESUMO

Postsynaptic mitochondria are critical to the development, plasticity, and maintenance of synaptic inputs. However, their relationship to synaptic structure and functional activity is unknown. We examined a correlative dataset from ferret visual cortex with in vivo two-photon calcium imaging of dendritic spines during visual stimulation and electron microscopy (EM) reconstructions of spine ultrastructure, investigating mitochondrial abundance near functionally- and structurally-characterized spines. Surprisingly, we found no correlation to structural measures of synaptic strength. Instead, we found that mitochondria are positioned near spines with orientation preferences that are dissimilar to the somatic preference. Additionally, we found that mitochondria are positioned near groups of spines with heterogeneous orientation preferences. For a subset of spines with mitochondrion in the head or neck, synapses were larger and exhibited greater selectivity to visual stimuli than those without a mitochondrion. Our data suggest mitochondria are not necessarily positioned to support the energy needs of strong spines, but rather support the structurally and functionally diverse inputs innervating the basal dendrites of cortical neurons.

5.
Neuron ; 110(9): 1573-1584.e4, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35123654

RESUMO

In visual cortex, signals from the two eyes merge to form a coherent binocular representation. Here we investigate the synaptic interactions underlying the binocular representation of stimulus orientation in ferret visual cortex with in vivo calcium imaging of layer 2/3 neurons and their dendritic spines. Individual neurons with aligned somatic responses received a mixture of monocular and binocular synaptic inputs. Surprisingly, monocular pathways alone could not account for somatic alignment because ipsilateral monocular inputs poorly matched somatic preference. Binocular inputs exhibited different degrees of interocular alignment, and those with a high degree of alignment (congruent) had greater selectivity and somatic specificity. While congruent inputs were similar to others in measures of strength, simulations show that the number of active congruent inputs predicts aligned somatic output. Our study suggests that coherent binocular responses derive from connectivity biases that support functional amplification of aligned signals within a heterogeneous binocular intracortical network.


Assuntos
Furões , Córtex Visual , Animais , Neurônios/fisiologia , Estimulação Luminosa/métodos , Visão Binocular/fisiologia , Córtex Visual/fisiologia
7.
Nature ; 590(7844): 111-114, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33328635

RESUMO

Single neocortical neurons are driven by populations of excitatory inputs, which form the basis of neuronal selectivity to features of sensory input. Excitatory connections are thought to mature during development through activity-dependent Hebbian plasticity1, whereby similarity between presynaptic and postsynaptic activity selectively strengthens some synapses and weakens others2. Evidence in support of this process includes measurements of synaptic ultrastructure and in vitro and in vivo physiology and imaging studies3-8. These corroborating lines of evidence lead to the prediction that a small number of strong synaptic inputs drive neuronal selectivity, whereas weak synaptic inputs are less correlated with the somatic output and modulate activity overall6,7. Supporting evidence from cortical circuits, however, has been limited to measurements of neighbouring, connected cell pairs, raising the question of whether this prediction holds for a broad range of synapses converging onto cortical neurons. Here we measure the strengths of functionally characterized excitatory inputs contacting single pyramidal neurons in ferret primary visual cortex (V1) by combining in vivo two-photon synaptic imaging and post hoc electron microscopy. Using electron microscopy reconstruction of individual synapses as a metric of strength, we find no evidence that strong synapses have a predominant role in the selectivity of cortical neuron responses to visual stimuli. Instead, selectivity appears to arise from the total number of synapses activated by different stimuli. Moreover, spatial clustering of co-active inputs appears to be reserved for weaker synapses, enhancing the contribution of weak synapses to somatic responses. Our results challenge the role of Hebbian mechanisms in shaping neuronal selectivity in cortical circuits, and suggest that selectivity reflects the co-activation of large populations of presynaptic neurons with similar properties and a mixture of strengths.


Assuntos
Vias Neurais , Células Piramidais/metabolismo , Sinapses/metabolismo , Córtex Visual/citologia , Córtex Visual/fisiologia , Animais , Feminino , Furões , Microscopia Eletrônica de Varredura , Modelos Neurológicos , Estimulação Luminosa , Células Piramidais/ultraestrutura , Sinapses/ultraestrutura
8.
Microsc Microanal ; 27(1): 156-169, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33303051

RESUMO

Brain circuits are highly interconnected three-dimensional structures fabricated from components ranging vastly in size; from cell bodies to individual synapses. While neuronal activity can be visualized with advanced light microscopy (LM) techniques, the resolution of electron microscopy (EM) is critical for identifying synaptic connections between neurons. Here, we combine these two techniques, affording the advantage of each and allowing for measurements to be made of the same neural features across imaging platforms. We established an EM-label-free workflow utilizing inherent structural features to correlate in vivo two-photon LM and volumetric scanning EM (SEM) in the ferret visual cortex. By optimizing the volume SEM sample preparation protocol, imaging with the OnPoint detector, and utilizing the focal charge compensation device during serial block-face imaging, we achieved sufficient resolution and signal-to-noise ratio to analyze synaptic ultrastructure for hundreds of synapses within sample volumes. Our novel workflow provides a reliable method for quantitatively characterizing synaptic ultrastructure in functionally imaged neurons, providing new insights into neuronal circuit organization.


Assuntos
Imageamento Tridimensional , Neurônios , Microscopia Eletrônica de Varredura , Neurônios/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...