Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276610

RESUMO

In this work, three series of micro-sized heterometallic europium-containing terephthalate MOFs, (Eu1-xLnx)2bdc3·nH2O (Ln = La, Gd, Lu), are synthesized via an ultrasound-assisted method in an aqueous medium. La3+ and Gd3+-doped terephthalates are isostructural to Eu2bdc3·4H2O. Lu3+-doped compounds are isostructural to Eu2bdc3·4H2O with Lu contents lower than 95 at.%. The compounds that are isostructural to Lu2bdc3·2.5H2O are formed at higher Lu3+ concentrations for the (Eu1-xLux)2bdc3·nH2O series. All materials consist of micrometer-sized particles. The particle shape is determined by the crystalline phase. All the synthesized samples demonstrate an "antenna" effect: a bright-red emission corresponding to the 5D0-7FJ transitions of Eu3+ ions is observed upon 310 nm excitation into the singlet electronic excited state of terephthalate ions. The fine structure of the emission spectra is determined by the crystalline phase due to the different local symmetries of the Eu3+ ions in the different kinds of crystalline structures. The photoluminescence quantum yield and 5D0 excited state lifetime of Eu3+ are equal to 11 ± 2% and 0.44 ± 0.01 ms, respectively, for the Ln2bdc3·4H2O structures. For the (Eu1-xLux)2bdc3·2.5H2O compounds, significant increases in the photoluminescence quantum yield and 5D0 excited state lifetime of Eu3+ are observed, reaching 23% and 1.62 ms, respectively.

2.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139098

RESUMO

Fluorescence of the vast majority of natural opsin-based photoactive proteins is extremely low, in accordance with their functions that depend on efficient transduction of absorbed light energy. However, several recently proposed classes of engineered rhodopsins with enhanced fluorescence, along with the discovery of a new natural highly fluorescent rhodopsin, NeoR, opened a way to exploit these transmembrane proteins as fluorescent sensors and draw more attention to studies on this untypical rhodopsin property. Here, we review the available data on the fluorescence of the retinal chromophore in microbial and animal rhodopsins and their photocycle intermediates, as well as different isomers of the protonated retinal Schiff base in various solvents and the gas phase.


Assuntos
Retina , Rodopsina , Animais , Rodopsina/metabolismo , Fluorescência , Retina/metabolismo
3.
Chemistry ; 29(47): e202300540, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37293937

RESUMO

Fluorescent isocoumarin-fused cycloalkynes, which are reactive in SPAAC and give fluorescent triazoles regardless of the azide nature, have been developed. The key structural feature that converts the non-fluorescent cycloalkyne/triazole pair to its fluorescent counterpart is the pi-acceptor group (COOMe, CN) at the C6 position of the isocoumarin ring. The design of the fluorescent cycloalkyne/triazole pairs is based on the theoretical study of the S1 state deactivation mechanism of the non-fluorescent isocoumarin-fused cycloalkyne IC9O using multi-configurational ab initio and DFT methodologies. The calculations revealed that deactivation proceeds through the electrocyclic ring opening of the α-pyrone cycle and is accompanied by a redistribution of electron density in the fused benzene ring. We proposed that the S1 excited state deactivation barrier could be increased by introducing a pi-acceptor group into a position that is in direct conjugation with the formed C=O group and has a reduced electron density in the transition state. As a proof of concept, we designed and synthesized two fluorescent isocoumarin-fused cycloalkynes IC9O-COOMe and IC9O-CN bearing pi-acceptors at the C6 position. The importance of the nature of a pi-acceptor group was shown by the example of much less fluorescent CF3 -substituted cycloalkyne IC9O-CF3 .

4.
Molecules ; 28(5)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36903620

RESUMO

Luminescent, heterometallic terbium(III)-lutetium(III) terephthalate metal-organic frameworks (MOFs) were synthesized via direct reaction between aqueous solutions of disodium terephthalate and nitrates of corresponding lanthanides by using two methods: synthesis from diluted and concentrated solutions. For (TbxLu1-x)2bdc3·nH2O MOFs (bdc = 1,4-benzenedicarboxylate) containing more than 30 at. % of Tb3+, only one crystalline phase was formed: Ln2bdc3·4H2O. At lower Tb3+ concentrations, MOFs crystallized as the mixture of Ln2bdc3·4H2O and Ln2bdc3·10H2O (diluted solutions) or Ln2bdc3 (concentrated solutions). All synthesized samples that contained Tb3+ ions demonstrated bright green luminescence upon excitation into the 1ππ* excited state of terephthalate ions. The photoluminescence quantum yields (PLQY) of the compounds corresponding to the Ln2bdc3 crystalline phase were significantly larger than for Ln2bdc3·4H2O and Ln2bdc3·10H2O phases due to absence of quenching from water molecules possessing high-energy O-H vibrational modes. One of the synthesized materials, namely, (Tb0.1Lu0.9)2bdc3·1.4H2O, had one of the highest PLQY among Tb-based MOFs, 95%.

5.
Materials (Basel) ; 16(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36984038

RESUMO

The series of luminescent NaYF4:Sm3+ nano- and microcrystalline materials co-doped by La3+, Gd3+, and Lu3+ ions were synthesized by hydrothermal method using rare earth chlorides as the precursors and citric acid as a stabilizing agent. The phase composition of synthesized compounds was studied by PXRD. All synthesized materials except ones with high La3+ content (where LaF3 is formed) have a ß-NaYF4 crystalline phase. SEM images demonstrate that all particles have shape of hexagonal prisms. The type and content of doping REE significantly effect on the particle size. Upon 400 nm excitation, phosphors exhibit distinct emission peaks in visible part of the spectrum attributed to 4G5/2→6HJ transitions (J = 5/2-11/2) of Sm3+ ion. Increasing the samarium (III) content results in concentration quenching by dipole-dipole interactions, the optimum Sm3+concentration is found to be of 2%. Co-doping by non-luminescent La3+, Gd3+ and Lu3+ ions leads to an increase in emission intensity. This effect was explained from the Sm3+ local symmetry point of view.

6.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768759

RESUMO

Membrane potential is a fundamental property of biological cells. Changes in membrane potential characterize a vast number of vital biological processes, such as the activity of neurons and cardiomyocytes, tumorogenesis, cell-cycle progression, etc. A common strategy to record membrane potential changes that occur in the process of interest is to utilize organic dyes or genetically-encoded voltage indicators with voltage-dependent fluorescence. Sensors are introduced into target cells, and alterations of fluorescence intensity are recorded with optical methods. Techniques that allow recording relative changes of membrane potential and do not take into account fluorescence alterations due to factors other than membrane voltage are already widely used in modern biological and biomedical studies. Such techniques have been reviewed previously in many works. However, in order to investigate a number of processes, especially long-term processes, the measured signal must be corrected to exclude the contribution from voltage-independent factors or even absolute values of cell membrane potential have to be evaluated. Techniques that enable such measurements are the subject of this review.


Assuntos
Corantes Fluorescentes , Neurônios , Potenciais da Membrana/fisiologia , Membrana Celular/metabolismo , Corantes Fluorescentes/metabolismo , Neurônios/metabolismo , Imagem Óptica
7.
Eur J Pharmacol ; 938: 175448, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470444

RESUMO

NMDA receptors play critical roles in numerous physiological and pathological processes in CNS that requires development of modulating ligands. In particular, photoswitchable compounds that selectively target NMDA receptors would be particularly useful for analysis of receptor contributions to various processes. Recently, we identified a light-dependent anti-NMDA activity of the azobenzene-containing quaternary ammonium compounds DENAQ (diethylamine-azobenzene-quaternary ammonium) and DMNAQ (dimethylamine-azobenzene-quaternary ammonium). Here, we developed a series of light-sensitive compounds based on the DENAQ structure, and studied their action on glutamate receptors in rat brain neurons using patch-clamp method. We found that the activities of the compounds and the influence of illumination strongly depended on the structural details, as even minor structural modifications greatly altered the activity and sensitivity to illumination. The compound PyrAQ (pyrrolidine-azobenzene-quaternary ammonium) was the most active and produced fast and fully reversible inhibition of NMDA receptors. The IC50 values under ambient and monochromic light conditions were 2 and 14 µM, respectively. The anti-AMPA activity was much weaker. The action of PyrAQ did not depend on NMDA receptor activity, agonist concentration, or membrane voltage, making it a useful tool for photopharmacological studies.


Assuntos
Compostos de Amônio , Receptores de N-Metil-D-Aspartato , Animais , Ratos , Compostos de Amônio/farmacologia , Compostos Azo/farmacologia , Compostos Azo/química , Receptores de Glutamato , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
8.
Nanomaterials (Basel) ; 12(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36080009

RESUMO

Two series of ß-NaYF4:Ln3+ nanoparticles (Ln = La-Nd, Sm-Lu) containing 20 at. % and 40 at. % of Ln3+ with well-defined morphology and size were synthesized via a facile citric-acid-assisted hydrothermal method using rare-earth chlorides as the precursors. The materials were composed from the particles that have a shape of uniform hexagonal prisms with an approximate size of 80-1100 nm. The mean diameter of NaYF4:Ln3+ crystals non-monotonically depended on the lanthanide atomic number and the minimum size was observed for Gd3+-doped materials. At the same time, the unit cell parameters decreased from La to Lu according to XRD data analysis. The diameter-to-length ratio increased from La to Lu in both studied series. The effect of the doping lanthanide(III) ion nature on particle size and shape was explained in terms of crystal growth dynamics. This study reports the correlation between the nanoparticle morphologies and the type and content of doping lanthanide ions. The obtained results shed light on the understanding of intrinsic factors' effect on structural features of the nanocrystalline materials.

9.
Molecules ; 27(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36144501

RESUMO

A new series of luminescent heterometallic europium(III)-lutetium(III) terephthalate metal-organic frameworks, namely (EuxLu1-x)2bdc3·nH2O, was synthesized using a direct reaction in a water solution. At the Eu3+ concentration of 1-40 at %, the MOFs were formed as a binary mixture of the (EuxLu1-x)2bdc3 and (EuxLu1-x)2bdc3·4H2O crystalline phases, where the Ln2bdc3·4H2O crystalline phase was enriched by europium(III) ions. At an Eu3+ concentration of more than 40 at %, only one crystalline phase was formed: (EuxLu1-x)2bdc3·4H2O. All MOFs containing Eu3+ exhibited sensitization of bright Eu3+-centered luminescence upon the 280 nm excitation into a 1ππ* excited state of the terephthalate ion. The fine structure of the emission spectra of Eu3+ 5D0-7FJ (J = 0-4) significantly depended on the Eu3+ concentration. The luminescence quantum yield of Eu3+ was significantly larger for Eu-Lu terephthalates containing a low concentration of Eu3+ due to the absence of Eu-Eu energy migration and the presence of the Ln2bdc3 crystalline phase with a significantly smaller nonradiative decay rate compared to the Ln2bdc3·4H2O.

10.
Biosensors (Basel) ; 12(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35884330

RESUMO

Copper is an inexpensive material that has found wide application in electronics due to its remarkable electric properties. However, the high toxicity of both copper and copper oxide imposes restrictions on the application of this metal as a material for bioelectronics. One way to increase the biocompatibility of pure copper while keeping its remarkable properties is to use copper-based composites. In the present study, we explored a new copper-ruthenium composite as a potential biocompatible material for bioelectrodes. Sample electrodes were obtained by subsequent laser deposition of copper and ruthenium on glass plates from a solution containing salts of these metals. The fabricated Cu-Ru electrodes exhibit high effective area and their impedance properties can be described by simple R-CPE equivalent circuits that make them perspective for sensing applications. Finally, we designed a simple impedance cell-based biosensor using this material that allows us to distinguish between dead and alive HeLa cells.


Assuntos
Técnicas Biossensoriais , Rutênio , Cobre , Impedância Elétrica , Eletrodos , Células HeLa , Humanos , Lasers
11.
Int J Mol Sci ; 22(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34884976

RESUMO

Azobenzene/tetraethyl ammonium photochromic ligands (ATPLs) are photoactive compounds with a large variety of photopharmacological applications such as nociception control or vision restoration. Absorption band maximum and lifetime of the less stable isomer are important characteristics that determine the applicability of ATPLs. Substituents allow to adjust these characteristics in a range limited by the azobenzene/tetraethyl ammonium scaffold. The aim of the current study is to find the scope and limitations for the design of ATPLs with specific spectral and kinetic properties by introducing para substituents with different electronic effects. To perform this task we synthesized ATPLs with various electron acceptor and electron donor functional groups and studied their spectral and kinetic properties using flash photolysis and conventional spectroscopy techniques as well as quantum chemical modeling. As a result, we obtained diagrams that describe correlations between spectral and kinetic properties of ATPLs (absorption maxima of E and Z isomers of ATPLs, the thermal lifetime of their Z form) and both the electronic effect of substituents described by Hammett constants and structural parameters obtained from quantum chemical calculations. The provided results can be used for the design of ATPLs with properties that are optimal for photopharmacological applications.


Assuntos
Compostos Azo/química , Bloqueadores dos Canais de Potássio/química , Teoria Quântica , Tetraetilamônio/química , Termodinâmica , Fenômenos Químicos , Cinética , Estereoisomerismo
12.
Nanomaterials (Basel) ; 11(9)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34578764

RESUMO

The luminescent coarse-, micro- and nanocrystalline europium(III) terephthalate tetrahydrate (Eu2bdc3·4H2O) metal-organic frameworks were synthesized by the ultrasound-assisted wet-chemical method. Electron micrographs show that the europium(III) terephthalate microparticles are 7 µm long leaf-like plates. According to the dynamic light scattering technique, the average size of the Eu2bdc3·4H2O nanoparticles is equal to about 8 ± 2 nm. Thereby, the reported Eu2bdc3·4H2O nanoparticles are the smallest nanosized rare-earth-based MOF crystals, to the best of our knowledge. The synthesized materials demonstrate red emission due to the 5D0-7FJ transitions of Eu3+ upon 250 nm excitation into 1ππ* state of the terephthalate ion. Size reduction results in broadened emission bands, an increase in the non-radiative rate constants and a decrease in both the quantum efficiency of the 5D0 level and Eu3+ and the luminescence quantum yields. Cu2+, Cr3+, and Fe3+ ions efficiently and selectively quench the luminescence of nanocrystalline europium(III) terephthalate, which makes it a prospective material for luminescent probes to monitor these ions in waste and drinking water.

13.
J Am Chem Soc ; 143(40): 16519-16537, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34582682

RESUMO

In the search for fundamentally new, active, stable, and readily synthetically accessible cycloalkynes as strain-promoted azide-alkyne cycloaddition (SPAAC) reagents for bioorthogonal bioconjugation, we integrated two common approaches: the reagent destabilization by the increase of a ring strain and the transition state stabilization through electronic effects. As a result new SPAAC reagents, heterocyclononynes fused to a heterocyclic core, were created. These compounds can be obtained through a general synthetic route based on four crucial steps: the electrophile-promoted cyclization, Sonogashira coupling, Nicholas reaction, and final deprotection of Co-complexes of cycloalkynes from cobalt. Varying the natures of the heterocycle and heteroatom allows for reaching the optimal stability-reactivity balance for new strained systems. Computational and experimental studies revealed similar SPAAC reactivities for stable 9-membered isocoumarin- and benzothiophene-fused heterocycloalkynes and their unstable 8-membered homologues. We discovered that close reactivity is a result of the interplay of two electronic effects, which stabilize SPAAC transition states (πin* → σ* and π* → πin*) with structural effects such as conformational changes from eclipsed to staggered conformations in the cycloalkyne scaffold, that noticeably impact alkyne bending and reactivity. The concerted influence of a heterocycle and a heteroatom on the polarization of a triple bond in highly strained cycles along with a low HOMO-LUMO gap was assumed to be the reason for the unpredictable kinetic instability of all the cyclooctynes and the benzothiophene-fused oxacyclononyne. The applicability of stable isocoumarin-fused azacyclononyne IC9N-BDP-FL for in vitro bioconjugation was exemplified by labeling and visualization of HEK293 cells carrying azido-DNA and azido-glycans.


Assuntos
Azidas
14.
ACS Chem Neurosci ; 12(18): 3347-3357, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34469111

RESUMO

Azobenzene-based quaternary ammonium compounds provide optical control of ion channels and are considered promising agents for regulation of neuronal excitability and for restoration of the photosensitivity of retinal cells. However, the selectivity of the action of these compounds remains insufficiently known. We studied the action of DENAQ (diethylamine-azobenzene-quaternary ammonium) and DMNAQ (dimethylamine-azobenzene-quaternary ammonium) on ionotropic glutamate receptors in rat brain neurons. In the dark, both compounds applied extracellularly caused fast and reversible inhibition of NMDA (N-methyl-d-aspartate) receptor-mediated currents with IC50 values of 10 and 5 µM, respectively. Light-induced transformation of DENAQ and DMNAQ to their cis forms caused the IC50 values to increase to 30 and 27 µM, respectively. Detailed analysis of this action revealed a complex nature consisting of fast inhibitory and slower potentiating effects. The AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors were only weakly affected independently on illumination. We conclude that, in addition to their long-lasting intracellular action, which persists after washout, azobenzene-based quaternary ammonium compounds should affect glutamatergic transmission and synaptic plasticity during treatment. Our findings also extend the list of soluble photoswitchable inhibitors of NMDA receptors. While the site(s) and mechanisms of action are unclear, the effect of DENAQ demonstrates strong pH dependence. At acidic pH values, DENAQ potentiates both NMDA and AMPA receptors.


Assuntos
Compostos de Amônio Quaternário , Receptores de N-Metil-D-Aspartato , Animais , Compostos Azo , Compostos de Amônio Quaternário/farmacologia , Ratos , Receptores de AMPA , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico
15.
J Chem Theory Comput ; 17(9): 5885-5895, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34379429

RESUMO

We present a novel technique for computing the free energy differences between two chromophore "isomers" hosted in a molecular environment (a generalized solvent). Such an environment may range from a relatively rigid protein cavity to a flexible solvent environment. The technique is characterized by the application of the previously reported "average electrostatic solvent configuration" method, and it is based on the idea of using the free energy perturbation theory along with a chromophore annihilation procedure in thermodynamic cycle calculations. The method is benchmarked by computing the ground-state room-temperature relative stabilities between (i) the cis and trans isomers of prototypal animal and microbial rhodopsins and (ii) the analogue isomers of a rhodopsin-like light-driven molecular switch in methanol. Furthermore, we show that the same technology can be used to estimate the activation free energy for the thermal isomerization of systems i-ii by replacing one isomer with a transition state. The results show that the computed relative stability and isomerization barrier magnitudes for the selected systems are in line with the available experimental observation in spite of their widely diverse complexity.

16.
ACS Omega ; 6(28): 18099-18109, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34308043

RESUMO

We investigated the influence of morphology of Ni microstructures modified with Au and Pt on their cell biocompatibility and electrocatalytic activity toward non-enzymatic glucose detection. Synthesis and modification were carried out using a simple and inexpensive approach based on the method of laser-induced deposition of metal microstructures from a solution on the surface of various dielectrics. Morphological analysis of the fabricated materials demonstrated that the surface of the Ni electrode has a hierarchical structure with large-scale 10 µm pores and small-scale 10 nm irregularities. In turn, the Ni-Pt surface has large-scale cavities, small-scale pores (1-1.5 µm), and a few tens of nanometer particles opposite to Ni-Au that reveals no obvious hierarchical structure. These observations were supported by impedance spectroscopy confirming the hierarchy of the surface topography of Ni and Ni-Pt structures. We tested the biocompatibility of the fabricated Ni-based electrodes with the HeLa cells. It was shown that the Ni-Au electrode has a much better cell adhesion than Ni-Pt with a more complex morphology. On the contrary, porous Ni and Ni-Pt electrodes with a more developed surface area than that of Ni-Au have better catalytic performance toward enzymeless glucose sensing, revealing greater sensitivity, selectivity, and stability. In this regard, modification of Ni with Pt led to the most prominent results providing rather good glucose detection limits (0.14 and 0.19 µA) and linear ranges (10-300 and 300-1500 µA) as well as the highest sensitivities of 18,570 and 2929 µA mM-1 cm-2. We also proposed some ideas to clarify the observed behavior and explain the influence of morphology of the fabricated electrodes on their electrocatalytic activity and biocompatibility.

17.
J Phys Chem B ; 125(26): 7213-7221, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34170695

RESUMO

Ultrafast excited-state dynamics of CuBr3- complex was studied in acetonitrile and dichloromethane solutions using femtosecond transient absorption spectroscopy with 18 fs temporal resolution and quantum-chemical DFT calculations. Upon 640 nm excitation, the CuBr3- complex is promoted to the ligand-to-metal charge transfer (LMCT) state, which then shortly undergoes internal conversion into the vibrationally hot ligand field (LF) excited state with time constants of 30 and 40 fs in acetonitrile and dichloromethane, respectively. The LF state nonradiatively relaxes into the ground state in 2.6 and 7.3 ps in acetonitrile and dichloromethane, respectively. Internal conversion of the LF state is accompanied by vibrational relaxation that occurs on the same time scale. Based on the analysis of coherent oscillations and quantum-chemical calculations, the predominant forms of the CuBr3- complex in acetonitrile and dichloromethane solutions were revealed. In acetonitrile, the CuBr3- complex exists as [CuBr3(CH3CN)2]-, whereas three forms of this complex, [CuBr3CH2Cl2]-, [CuBr3(CH2Cl2)2]-, and [CuBr3(CH2Cl2)3]-, are present in equilibrium in dichloromethane.


Assuntos
Vibração , Ligantes , Análise Espectral
18.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809708

RESUMO

A typical feature of proteins from the rhodopsin family is the sensitivity of their absorption band maximum to protein amino acid composition. For this reason, studies of these proteins often require methodologies that determine spectral shift caused by amino acid substitutions. Generally, quantum mechanics/molecular mechanics models allow for the calculation of a substitution-induced spectral shift with high accuracy, but their application is not always easy and requires special knowledge. In the present study, we propose simple models that allow us to estimate the direct effect of a charged or polar residue substitution without extensive calculations using only rhodopsin three-dimensional structure and plots or tables that are provided in this article. The models are based on absorption maximum values calculated at the SORCI+Q level of theory for cis- and trans-forms of retinal protonated Schiff base in an external electrostatic field of charges and dipoles. Each value corresponds to a certain position of a charged or polar residue relative to the retinal chromophore. The proposed approach was evaluated against an example set consisting of twelve bovine rhodopsin and sodium pumping rhodopsin mutants. The limits of the applicability of the models are also discussed. The results of our study can be useful for the interpretation of experimental data and for the rational design of rhodopsins with required spectral properties.


Assuntos
Aminoácidos/química , Proteínas de Bactérias/química , Modelos Moleculares , Rodopsina/química , Análise Espectral , Eletricidade Estática , Substituição de Aminoácidos , Animais , Bovinos , Mutação/genética , Prótons , Rodopsina/genética , Bases de Schiff/química
19.
ACS Biomater Sci Eng ; 7(6): 1962-1986, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33749256

RESUMO

In this review, we aim to introduce the reader to the technique of electrical impedance spectroscopy (EIS) with a focus on its biological, biomaterials, and medical applications. We explain the theoretical and experimental aspects of the EIS with the details essential for biological studies, i.e., interaction of metal electrodes with biological matter and liquids, strategies of measurement rate increasing, noise reduction in bio-EIS experiments, etc. We also give various examples of successful bio-EIS practical implementations in science and technology, from whole-body health monitoring and sensors for vision prosthetic care to single living cell examination platforms, virus disease research, biomolecules detection, and implementation of novel biomaterials. The present review can be used as a bio-EIS tutorial for students as well as a handbook for scientists and engineers because of the extensive references covering the contemporary research papers in the field.


Assuntos
Técnicas Biossensoriais , Espectroscopia Dielétrica , Eletrodos , Humanos , Metais
20.
Materials (Basel) ; 13(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260836

RESUMO

In this paper, we propose a fast and simple approach for the fabrication of the electrocatalytically active ruthenium-containing microstructures using a laser-induced metal deposition technique. The results of scanning electron microscopy and electrical impedance spectroscopy (EIS) demonstrate that the fabricated ruthenium-based microelectrode had a highly developed surface composed of 10 µm pores and 10 nm zigzag cracks. The fabricated material exhibited excellent electrochemical properties toward non-enzymatic dopamine sensing, including high sensitivity (858.5 and 509.1 µA mM-1 cm-2), a low detection limit (0.13 and 0.15 µM), as well as good selectivity and stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...