Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494251

RESUMO

The structure of the Co2MnAl-type Heusler alloy in the form of a melt-spun ribbon was studied by electron microscopy, electron back-scattered diffraction (EBSD), and X-ray diffraction. The melt-spun ribbon consists of a homogeneous single-phase disordered Heusler alloy at the wheel side of the ribbon and an inhomogeneous single-phase alloy, formed by cellular or dendritic growth, at the free surface of the ribbon. Cellular growth causes the formation of an inhomogeneous distribution of the elemental constituents, with a higher Co and Al concentration in the centre of the cells or dendritic arms and a higher concentration of Mn at the cell boundaries. The EBSD analysis shows that the columnar crystals grow in the <111> crystal direction and are declined by about 10° against the direction of the spinning.

2.
J Phys Chem B ; 119(30): 9706-16, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26146848

RESUMO

Several methods based on single- and two-photon fluorescence detected linear dichroism have recently been used to determine the orientational distributions of fluorescent dyes in lipid membranes. However, these determinations relied on simplified descriptions of nonlinear anisotropic properties of the dye molecules, using a transition dipole-moment-like vector instead of an absorptivity tensor. To investigate the validity of the vector approximation, we have now carried out a combination of computer simulations and polarization microscopy experiments on two representative fluorescent dyes (DiI and F2N12S) embedded in aqueous phosphatidylcholine bilayers. Our results indicate that a simplified vector-like treatment of the two-photon transition tensor is applicable for molecular geometries sampled in the membrane at ambient conditions. Furthermore, our results allow evaluation of several distinct polarization microscopy techniques. In combination, our results point to a robust and accurate experimental and computational treatment of orientational distributions of DiI, F2N12S, and related dyes (including Cy3, Cy5, and others), with implications to monitoring physiologically relevant processes in cellular membranes in a novel way.


Assuntos
Membrana Celular/química , Corantes Fluorescentes/química , Dinâmica não Linear , Fenômenos Ópticos , Fosfolipídeos , Conformação Molecular , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA