Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Chem Inf Model ; 62(16): 3766-3783, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35943739

RESUMO

The multipole model (MM) uses an aspherical approach to describe electron density and can be used to interpret data from X-ray diffraction in a more accurate manner than using the spherical approximation. The MATTS (multipolar atom types from theory and statistical clustering) data bank gathers MM parameters specific for atom types in proteins, nucleic acids, and organic molecules. However, it was not fully understood how the electron density of particular atoms responds to their surroundings and which factors describe the electron density in molecules within the MM. In this work, by applying clustering using descriptors available in the MATTS data bank, that is, topology and multipole parameters, we found the topology features with the biggest impact on the multipole parameters: the element of the central atom, the number of first neighbors, and planarity of the group. The similarities in the spatial distribution of electron density between and within atom type classes revealed distinct and unique atom types. The quality of existing types can be improved by adding better parametrization, definitions, and local coordinate systems. Future development of the MATTS data bank should lead to a wider range of atom types necessary to construct the electron density of any molecule.


Assuntos
Elétrons , Análise por Conglomerados , Difração de Raios X
2.
Nanomaterials (Basel) ; 8(6)2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899262

RESUMO

The exceptional magnetic properties of superparamagnetic iron oxide nanoparticles (SPIONs) make them promising materials for biomedical applications like hyperthermia, drug targeting and imaging. Easy preparation of SPIONs with the controllable, well-defined properties is a key factor of their practical application. In this work, we report a simple synthesis of Ho-doped SPIONs by the co-precipitation route, with controlled size, shape and magnetic properties. To investigate the influence of the ions ratio on the nanoparticles’ properties, multiple techniques were used. Powder X-ray diffraction (PXRD) confirmed the crystallographic structure, indicating formation of an Fe3O4 core doped with holmium. In addition, transmission electron microscopy (TEM) confirmed the correlation of the crystallites’ shape and size with the experimental conditions, pointing to critical holmium content around 5% for the preparation of uniformly shaped grains, while larger holmium content leads to uniaxial growth with a prism shape. Studies of the magnetic behaviour of nanoparticles show that magnetization varies with changes in the initial Ho3+ ions percentage during precipitation, while below 5% of Ho in doped Fe3O4 is relatively stable and sufficient for biomedicine applications. The characterization of prepared nanoparticles suggests that co-precipitation is a simple and efficient technique for the synthesis of superparamagnetic, Ho-doped SPIONs for hyperthermia application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...