Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38610577

RESUMO

Josephson junctions (JJs) are superconductor-based devices used to build highly sensitive magnetic flux sensors called superconducting quantum interference devices (SQUIDs). These sensors may vary in design, being the radio frequency (RF) SQUID, direct current (DC) SQUID, and hybrid, such as D-SQUID. In addition, recently many of JJ's applications were found in spiking models of neurons exhibiting nearly biological behavior. In this study, we propose and investigate a new circuit model of a sensory neuron based on DC SQUID as part of the circuit. The dependence of the dynamics of the designed model on the external magnetic flux is demonstrated. The design of the circuit and derivation of the corresponding differential equations that describe the dynamics of the system are given. Numerical simulation is used for experimental evaluation. The experimental results confirm the applicability and good performance of the proposed magnetic-flux-sensitive neuron concept: the considered device can encode the magnetic flux in the form of neuronal dynamics with the linear section. Furthermore, some complex behavior was discovered in the model, namely the intermittent chaotic spiking and plateau bursting. The proposed design can be efficiently applied to developing the interfaces between circuitry and spiking neural networks. However, it should be noted that the proposed neuron design shares the main limitation of all the superconductor-based technologies, i.e., the need for a cryogenic and shielding system.

2.
Sensors (Basel) ; 22(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35890894

RESUMO

Sensors based on chaotic oscillators have a simple design, combined with high sensitivity and energy efficiency. Among many developed schemes of such sensors, the promising one is based on the Duffing oscillator, which possesses a remarkable property of demonstrating chaotic oscillations only in the presence of a weak sine wave at the input. The main goal of this research was to evaluate the maximal sensitivity of a practically implemented metal detector based on the Duffing oscillator and compare its sensitivity with conventional sensors. To achieve high efficiency of the Duffing-based design, we proposed an algorithm which performs a bifurcation analysis of any chaotic system, classifies the oscillation modes and determines the system sensitivity to a change in different parameters. We apply the developed algorithm to improve the sensitivity of the electronic circuit implementing the Duffing oscillator, serving as a key part of a three-coil metal detector. We show that the developed design allows detecting the presence of metal objects near the coils more reliably than the conventional signal analysis techniques, and the developed detector is capable of sensing a large metal plate at distances up to 2.8 of the coil diameter, which can be considered a state-of-the-art result.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...