Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells Int ; 2023: 1842958, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771549

RESUMO

The heterogeneity of the mesenchymal stem/stromal cells (MSCs) population poses a challenge to researchers and clinicians, especially those observed at the population level. What is more, the lack of precise evidences regarding MSCs developmental origin even further complicate this issue. As the available evidences indicate several possible pathways of MSCs formation, this diverse origin may be reflected in the unique subsets of cells found within the MSCs population. Such populations differ in specialization degree, proliferation, and immunomodulatory properties or exhibit other additional properties such as increased angiogenesis capacity. In this review article, we attempted to identify such outstanding populations according to the specific surface antigens or intracellular markers. Described groups were characterized depending on their specialization and potential therapeutic application. The reports presented here cover a wide variety of properties found in the recent literature, which is quite scarce for many candidates mentioned in this article. Even though the collected information would allow for better targeting of specific subpopulations in regenerative medicine to increase the effectiveness of MSC-based therapies.

2.
Cells ; 12(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36611971

RESUMO

INTRODUCTION: One of the key factors that may influence the therapeutic potential of mesenchymal stem/stromal cells (MSCs) is their metabolism. The switch between mitochondrial respiration and glycolysis can be affected by many factors, including the oxygen concentration and the spatial form of culture. This study compared the metabolic features of adipose-derived mesenchymal stem/stromal cells (ASCs) and dedifferentiated fat cells (DFATs) cultivated as monolayer or spheroid culture under 5% O2 concentration (physiological normoxia) and their impact on MSCs therapeutic abilities. RESULTS: We observed that the cells cultured as spheroids had a slightly lower viability and a reduced proliferation rate but a higher expression of the stemness-related transcriptional factors compared to the cells cultured in monolayer. The three-dimensional culture form increased mtDNA content, oxygen consumption rate (OCR) and extracellular acidification rate (ECAR), especially in DFATs-3D population. The DFATs spheroids also demonstrated increased levels of Complex V proteins and higher rates of ATP production. Moreover, increased reactive oxygen species and lower intracellular lactic acid levels were also found in 3D culture. CONCLUSION: Our results may suggest that metabolic reconfiguration accompanies the transition from 2D to 3D culture and the processes of both mitochondrial respiration and glycolysis become more active. Intensified metabolism might be associated with the increased demand for energy, which is needed to maintain the expression of pluripotency genes and stemness state.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Mesenquimais , Humanos , Técnicas de Cultura de Células/métodos , Tecido Adiposo/metabolismo , Células Cultivadas , Esferoides Celulares , Células-Tronco Mesenquimais/metabolismo
3.
Front Neurosci ; 17: 1332751, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38282622

RESUMO

Neural stem cells (NSCs) hold a very significant promise as candidates for cell therapy due to their robust neuroprotective and regenerative properties. Preclinical studies using NSCs have shown enough encouraging results to perform deeper investigations into more potential clinical applications. Nevertheless, our knowledge regarding neurogenesis and its underlying mechanisms remains incomplete. To understand them better, it seems necessary to characterize all components of neural stem cell niche and discover their role in physiology and pathology. Using NSCs in vivo brings challenges including limited cell survival and still inadequate integration within host tissue. Identifying overlooked factors that might influence these outcomes becomes pivotal. In this review, we take a deeper examination of the influence of a fundamental element that is present in the brain, the cerebrospinal fluid (CSF), which still remains relatively unexplored. Its role in neurogenesis could be instrumental to help find novel therapeutic solutions for neurological disorders, eventually advancing our knowledge on central nervous system (CNS) regeneration and repair.

4.
Cells ; 11(9)2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35563770

RESUMO

Rapid developments in stem cell research in recent years have provided a solid foundation for their use in medicine. Over the last few years, hundreds of clinical trials have been initiated in a wide panel of indications. Disorders and injuries of the nervous system still remain a challenge for the regenerative medicine. Neural stem cells (NSCs) are the optimal cells for the central nervous system restoration as they can differentiate into mature cells and, most importantly, functional neurons and glial cells. However, their application is limited by multiple factors such as difficult access to source material, limited cells number, problematic, long and expensive cultivation in vitro, and ethical considerations. On the other hand, according to the available clinical databases, most of the registered clinical trials involving cell therapies were carried out with the use of mesenchymal stem/stromal/signalling cells (MSCs) obtained from afterbirth or adult human somatic tissues. MSCs are the multipotent cells which can also differentiate into neuron-like and glia-like cells under proper conditions in vitro; however, their main therapeutic effect is more associated with secretory and supportive properties. MSCs, as a natural component of cell niche, affect the environment through immunomodulation as well as through the secretion of the trophic factors. In this review, we discuss various therapeutic strategies and activated mechanisms related to bilateral MSC-NSC interactions, differentiation of MSCs towards the neural cells (subpopulation of crest-derived cells) under the environmental conditions, bioscaffolds, or co-culture with NSCs by recreating the conditions of the neural cell niche.


Assuntos
Células-Tronco Mesenquimais , Células-Tronco Neurais , Adulto , Encéfalo , Diferenciação Celular/fisiologia , Humanos , Regeneração Nervosa
5.
Cells ; 10(6)2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208414

RESUMO

Currently, the number of stem-cell based experimental therapies in neurological injuries and neurodegenerative disorders has been massively increasing. Despite the fact that we still have not obtained strong evidence of mesenchymal stem/stromal cells' neurogenic effectiveness in vivo, research may need to focus on more appropriate sources that result in more therapeutically promising cell populations. In this study, we used dedifferentiated fat cells (DFAT) that are proven to demonstrate more pluripotent abilities in comparison with standard adipose stromal cells (ASCs). We used the ceiling culture method to establish DFAT cells and to optimize culture conditions with the use of a physioxic environment (5% O2). We also performed neural differentiation tests and assessed the neurogenic and neuroprotective capability of both DFAT cells and ASCs. Our results show that DFAT cells may have a better ability to differentiate into oligodendrocytes, astrocytes, and neuron-like cells, both in culture supplemented with N21 and in co-culture with oxygen-glucose-deprived (OGD) hippocampal organotypic slice culture (OHC) in comparison with ASCs. Results also show that DFAT cells have a different secretory profile than ASCs after contact with injured tissue. In conclusion, DFAT cells constitute a distinct subpopulation and may be an alternative source in cell therapy for the treatment of nervous system disorders.


Assuntos
Adipócitos/citologia , Tecido Adiposo/citologia , Diferenciação Celular , Linhagem da Célula , Células-Tronco Mesenquimais/citologia , Neurogênese , Fármacos Neuroprotetores/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Células Cultivadas , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...