Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 13: 29, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30792630

RESUMO

In the neonatal rodent hippocampus, the first and predominant pattern of correlated neuronal network activity is early sharp waves (eSPWs). Whether and how eSPWs are organized bilaterally remains unknown. Here, using simultaneous silicone probe recordings from the left and right hippocampus in neonatal rats in vivo we found that eSPWs are highly synchronized bilaterally with nearly zero time lag between the two sides. The amplitudes of eSPWs in the left and right hippocampi were also highly correlated. eSPWs also supported bilateral synchronization of multiple unit activity (MUA). We suggest that bilateral correlated activity supported by synchronized eSPWs participates in the formation of bilateral connections in the hippocampal system.

2.
Cereb Cortex ; 29(2): 906-920, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30535003

RESUMO

Correlated activity in the entorhinal-hippocampal neuronal networks, supported by oscillatory and intermittent population activity patterns is critical for learning and memory. However, when and how correlated activity emerges in these networks during development remains largely unknown. Here, we found that during the first postnatal week in non-anaesthetized head-restrained rats, activity in the superficial layers of the medial entorhinal cortex (MEC) and hippocampus was highly correlated, with intermittent population bursts in the MEC followed by early sharp waves (eSPWs) in the hippocampus. Neurons in the superficial MEC layers fired before neurons in the dentate gyrus, CA3 and CA1. eSPW current-source density profiles indicated that perforant/temporoammonic entorhinal inputs and intrinsic hippocampal connections are co-activated during entorhinal-hippocampal activity bursts. Finally, a majority of the entorhinal-hippocampal bursts were triggered by spontaneous myoclonic body movements, characteristic of the neonatal period. Thus, during the neonatal period, activity in the entorhinal cortex (EC) and hippocampus is highly synchronous, with the EC leading hippocampal activation. We propose that such correlated activity is embedded into a large-scale bottom-up circuit that processes somatosensory feedback resulting from neonatal movements, and that it is likely to instruct the development of connections between neocortex and hippocampus.


Assuntos
Córtex Entorrinal/crescimento & desenvolvimento , Hipocampo/crescimento & desenvolvimento , Movimento/fisiologia , Rede Nervosa/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Feminino , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...