Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 126(6): 064703, 2007 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-17313234

RESUMO

The authors employ three numerical methods to explore the motion of low Reynolds number swimmers, modeling the hydrodynamic interactions by means of the Oseen tensor approximation, lattice Boltzmann simulations, and multiparticle collision dynamics. By applying the methods to a three bead linear swimmer, for which exact results are known, the authors are able to compare and assess the effectiveness of the different approaches. They then propose a new class of low Reynolds number swimmers, generalized three bead swimmers that can change both the length of their arms and the angle between them. Hence they suggest a design for a microstructure capable of moving in three dimensions. They discuss multiple bead, linear microstructures and show that they are highly efficient swimmers. They then turn to consider the swimming motion of elastic filaments. Using multiparticle collision dynamics the authors show that a driven filament behaves in a qualitatively similar way to the micron-scale swimming device recently demonstrated by Dreyfus et al. [Nature (London) 437, 862 (2005)].


Assuntos
Fenômenos Fisiológicos Bacterianos , Modelos Biológicos , Matemática , Movimento (Física)
2.
J Chem Phys ; 125(19): 194906, 2006 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-17129166

RESUMO

We use bead-spring models for a polymer coupled to a solvent described by multiparticle collision dynamics to investigate shear thinning effects in dilute polymer solutions. First, we consider the polymer motion and configuration in a shear flow. For flexible polymer models we find a sharp increase in the polymer radius of gyration and the fluctuations in the radius of gyration at a Weissenberg number approximately 1. We then consider the polymer viscosity and the effect of solvent quality, excluded volume, hydrodynamic coupling between the beads, and finite extensibility of the polymer bonds. We conclude that the excluded volume effect is the major cause of shear thinning in polymer solutions. Comparing the behavior of semiflexible chains, we find that the fluctuations in the radius of gyration are suppressed when compared to the flexible case. The shear thinning is greater and, as the rigidity is increased, the viscosity measurements tend to those for a multibead rod.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(6 Pt 1): 061804, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16089758

RESUMO

We investigate numerically the dynamical behavior of a polymer chain collapsing in a dilute solution. The rate of collapse is measured with and without the presence of hydrodynamic interactions. We find that hydrodynamic interactions accelerate polymer collapse. We present a scaling theory describing the physical process responsible for the collapse kinetics. Predicted collapse times in a hydrodynamic (tauH approximately N(4/3)) and a Brownian heat bath (tauB approximately N2) agree well with the numerical results (tauH approximately N(1.40+/-0.08) and tauB approximately N(1.89+/-0.09)) where N denotes chain length. The folding kinetics of Go models of proteins is also examined. We show that for these systems, where many free energy minima compete, hydrodynamics has little effect on the kinetics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...