Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 11(1): 291-303, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28045493

RESUMO

Carbon nanotubes (CNTs) have the potential to impact technological and industrial progress, but their production and use may, in some cases, cause serious health problems. Certain rod-shaped multiwalled CNTs (rCNTs) can, in fact, induce severe asbestos-like pathogenicity in mice, including granuloma formation, fibrosis, and even cancer. Evaluating the comparability between alternative hazard assessment methods is needed to ensure fast and reliable evaluation of the potentially adverse effects of these materials. To compare two alternative airway exposure methods, C57BL/6 mice were exposed to rCNTs by a state-of-the-art but laborious and expensive inhalation method (6.2-8.2 mg/m3, 4 h/day for 4 days) or by oropharyngeal aspiration (10 or 40 µg/day for 4 days), which is cheaper and easier to perform. In addition to histological and cytological studies, transcriptome analysis was also carried out on the lung tissue samples. Both inhalation and low-dose (10 µg/day) aspiration exposure to rCNTs promoted strong accumulation of eosinophils in the lungs and recruited also a few neutrophils and lymphocytes. In contrast, the aspiration of a high-dose (40 µg/day) rCNT caused only a mild pulmonary eosinophilia but enhanced accumulation of neutrophils in the airways. Inhalation and low-dose aspiration exposure promoted comparable giant cell formation, mucus production, and IL-13 expression in the lungs. Both exposure methods also exacerbated similar expression alterations with 154 (56.4%) differentially expressed, overlapping genes in microarray analyses. Of all differentially expressed genes, up to 80% of the activated biological functions were shared according to pathway enrichment analyses. Inhalation and low-dose aspiration elicited very similar pulmonary inflammation providing evidence that oropharyngeal aspiration is a valid approach and a convenient alternative to the inhalation exposure for the hazard assessment of nanomaterials.


Assuntos
Pulmão/efeitos dos fármacos , Nanotubos de Carbono/química , Pneumonia/induzido quimicamente , Administração por Inalação , Animais , Feminino , Exposição por Inalação , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/metabolismo
2.
Mutagenesis ; 32(1): 23-31, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27470699

RESUMO

Nanofibrillated cellulose (NFC) is a sustainable and renewable nanomaterial, with diverse potential applications in the paper and medical industries. As NFC consists of long fibres of high aspect ratio, we examined here whether TEMPO-(2,2,6,6-tetramethyl-piperidin-1-oxyl) oxidised NFC (length 300-1000nm, thickness 10-25nm), administrated by a single pharyngeal aspiration, could be genotoxic to mice, locally in the lungs or systemically in the bone marrow. Female C57Bl/6 mice were treated with four different doses of NFC (10, 40, 80 and 200 µg/mouse), and samples were collected 24h later. DNA damage was assessed by the comet assay in bronchoalveolar lavage (BAL) and lung cells, and chromosome damage by the bone marrow erythrocyte micronucleus assay. Inflammation was evaluated by BAL cell counts and analysis of cytokines and histopathological alterations in the lungs. A significant induction of DNA damage was observed at the two lower doses of NFC in lung cells, whereas no increase was seen in BAL cells. No effect was detected in the bone marrow micronucleus assay, either. NFC increased the recruitment of inflammatory cells to the lungs, together with a dose-dependent increase in mRNA expression of tumour necrosis factor α, interleukins 1ß and 6, and chemokine (C-X-C motif) ligand 5, although there was no effect on the levels of the respective proteins. The histological analysis showed a dose-related accumulation of NFC in the bronchi, the alveoli and some in the cytoplasm of macrophages. In addition, neutrophilic accumulation in the alveolar lung space was observed with increasing dose. Our findings showed that NFC administered by pharyngeal aspiration caused an acute inflammatory response and DNA damage in the lungs, but no systemic genotoxic effect in the bone marrow. The present experimental design did not, however, allow us to determine whether the responses were transient or could persist for a longer time.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Celulose/toxicidade , Dano ao DNA , Pulmão/efeitos dos fármacos , Nanofibras/toxicidade , Animais , Células da Medula Óssea/metabolismo , Celulose/farmacologia , Ensaio Cometa , Citocinas , DNA/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Feminino , Inflamação , Pulmão/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Micronúcleos com Defeito Cromossômico , Testes para Micronúcleos , Nanofibras/química
3.
Toxicol Sci ; 147(1): 140-55, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26048651

RESUMO

Carbon nanotubes (CNT) have been eagerly studied because of their multiple applications in product development and potential risks on health. We investigated the difference of two different CNT and asbestos in inducing proinflammatory reactions in C57BL/6 mice after single pharyngeal aspiration exposure. We used long tangled and long rod-like CNT, as well as crocidolite asbestos at a dose of 10 or 40 µg/mouse. The mice were sacrificed 4 and 16 h or 7, 14, and 28 days after the exposure. To find out the importance of a major inflammatory marker IL-1ß in CNT-induced pulmonary inflammation, we used etanercept and anakinra as antagonists as well as Interleukin 1 (IL-1) receptor (IL-1R-/-) mice. The results showed that rod-like CNT, and asbestos in lesser extent, induced strong pulmonary neutrophilia accompanied by the proinflammatory cytokines and chemokines 16 h after the exposure. Seven days after the exposure, neutrophilia had essentially disappeared but strong pulmonary eosinophilia peaked in rod-like CNT and asbestos-exposed groups. After 28 days, pulmonary granulomas, goblet cell hyperplasia, and Charcot-Leyden-like crystals containing acidophilic macrophages were observed especially in rod-like CNT-exposed mice. IL-1R-/- mice and antagonists-treated mice exhibited a significant decrease in neutrophilia and messenger ribonucleic acid (mRNA) levels of proinflammatory cytokines at 16 h. However, rod-like CNT-induced Th2-type inflammation evidenced by the expression of IL-13 and mucus production was unaffected in IL-1R-/- mice at 28 days. This study provides knowledge about the pulmonary effects induced by a single exposure to the CNT and contributes to hazard assessment of carbon nanomaterials on airway exposure.


Assuntos
Amianto/toxicidade , Nanotubos de Carbono/toxicidade , Pneumonia/induzido quimicamente , Pneumonia/patologia , Receptores de Interleucina-1/metabolismo , Animais , Asbesto Crocidolita/toxicidade , Linfócitos T CD4-Positivos/efeitos dos fármacos , Quimiocinas/biossíntese , Citocinas/biossíntese , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muco/efeitos dos fármacos , Muco/metabolismo , Neutrófilos/efeitos dos fármacos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de Interleucina-1/efeitos dos fármacos , Receptores de Interleucina-1/genética
4.
Part Fibre Toxicol ; 11: 48, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25318534

RESUMO

BACKGROUND: Carbon nanotubes (CNT) represent a great promise for technological and industrial development but serious concerns on their health effects have also emerged. Rod-shaped CNT are, in fact, able to induce asbestos-like pathogenicity in mice including granuloma formation in abdominal cavity and sub-pleural fibrosis. Exposure to CNT, especially in the occupational context, happens mainly by inhalation. However, little is known about the possible effects of CNT on pulmonary allergic diseases, such as asthma. METHODS: We exposed mice by inhalation to two types of multi-walled CNT, rigid rod-like and flexible tangled CNT, for four hours a day once or on four consecutive days. Early events were monitored immediately and 24 hours after the single inhalation exposure and the four day exposure mimicked an occupational work week. Mast cell deficient mice were used to evaluate the role of mast cells in the occurring inflammation. RESULTS: Here we show that even a short-term inhalation of the rod-like CNT induces novel innate immunity-mediated allergic-like airway inflammation in healthy mice. Marked eosinophilia was accompanied by mucus hypersecretion, AHR and the expression of Th2-type cytokines. Exploration of the early events by transcriptomics analysis reveals that a single 4-h exposure to rod-shaped CNT, but not to tangled CNT, causes a radical up-regulation of genes involved in innate immunity and cytokine/chemokine pathways. Mast cells were found to partially regulate the inflammation caused by rod-like CNT, but also alveaolar macrophages play an important role in the early stages. CONCLUSIONS: These observations emphasize the diverse abilities of CNT to impact the immune system, and they should be taken into account for hazard assessment.


Assuntos
Poluentes Atmosféricos/toxicidade , Exposição por Inalação/efeitos adversos , Nanotubos de Carbono/toxicidade , Pneumonia/induzido quimicamente , Hipersensibilidade Respiratória/etiologia , Mucosa Respiratória/efeitos dos fármacos , Sistema Respiratório/efeitos dos fármacos , Aerossóis , Poluentes Atmosféricos/química , Animais , Citocinas/agonistas , Citocinas/genética , Citocinas/metabolismo , Eosinofilia/etiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Mastócitos/metabolismo , Mastócitos/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/fisiopatologia , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/fisiopatologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Sistema Respiratório/imunologia , Sistema Respiratório/metabolismo , Sistema Respiratório/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...