Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 8: 1451, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28878792

RESUMO

Ongoing changes in Earth's climate are shifting the elevation ranges of many plant species with non-native species often experiencing greater expansion into higher elevations than native species. These climate change-induced shifts in distributions inevitably expose plants to novel biotic and abiotic environments, including altered solar ultraviolet (UV)-B (280-315 nm) radiation regimes. Do the greater migration potentials of non-native species into higher elevations imply that they have more effective UV-protective mechanisms than native species? In this study, we surveyed leaf epidermal UV-A transmittance (TUV A) in a diversity of plant species representing different growth forms to test whether native and non-native species growing above 2800 m elevation on Mauna Kea, Hawaii differed in their UV screening capabilities. We further compared the degree to which TUV A varied along an elevation gradient in the native shrub Vaccinium reticulatum and the introduced forb Verbascum thapsus to evaluate whether these species differed in their abilities to adjust their levels of UV screening in response to elevation changes in UV-B. For plants growing in the Mauna Kea alpine/upper subalpine, we found that adaxial TUV A, measured with a UVA-PAM fluorometer, varied significantly among species but did not differ between native (mean = 6.0%; n = 8) and non-native (mean = 5.8%; n = 11) species. When data were pooled across native and non-native taxa, we also found no significant effect of growth form on TUV A, though woody plants (shrubs and trees) were represented solely by native species whereas herbaceous growth forms (grasses and forbs) were dominated by non-native species. Along an elevation gradient spanning 2600-3800 m, TUV A was variable (mean range = 6.0-11.2%) and strongly correlated with elevation and relative biologically effective UV-B in the exotic V. thapsus; however, TUV A was consistently low (3%) and did not vary with elevation in the native V. reticulatum. Results indicate that high levels of UV protection occur in both native and non-native species in this high UV-B tropical alpine environment, and that flexibility in UV screening is a mechanism employed by some, but not all species to cope with varying solar UV-B exposures along elevation gradients.

2.
Oecologia ; 181(1): 55-63, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26809621

RESUMO

The accumulation of ultraviolet (UV)-absorbing compounds (flavonoids and related phenylpropanoids) in the epidermis of higher plants reduces the penetration of solar UV radiation to underlying tissues and is a primary mechanism of acclimation to changing UV conditions resulting from ozone depletion and climate change. Previously we reported that several herbaceous plant species were capable of rapid, diurnal adjustments in epidermal UV transmittance (T UV), but how widespread this phenomenon is among plants has been unknown. In the present study, we tested the generality of this response by screening 37 species of various cultivated and wild plants growing in four locations spanning a gradient of ambient solar UV and climate (Hawaii, Utah, Idaho and Louisiana). Non-destructive measurements of adaxial T UV indicated that statistically significant midday decreases in T UV occurred in 49 % of the species tested, including both herbaceous and woody growth forms, and there was substantial interspecific variation in the magnitude of these changes. In general, plants in Louisiana exhibited larger diurnal changes in T UV than those in the other locations. Moreover, across all taxa, the magnitude of these changes was positively correlated with minimum daily air temperatures but not daily UV irradiances. Results indicate that diurnal changes in UV shielding are widespread among higher plants, vary both within and among species and tend to be greatest in herbaceous plants growing in warm environments. These findings suggest that plant species differ in their UV protection "strategies" though the functional and ecological significance of this variation in UV sunscreen protection remains unclear at present.


Assuntos
Aclimatação , Flavonoides/metabolismo , Fenóis/metabolismo , Epiderme Vegetal/metabolismo , Plantas/metabolismo , Raios Ultravioleta , Clima , Mudança Climática , Ozônio , Propanóis/metabolismo , Especificidade da Espécie , Luz Solar , Protetores Solares , Temperatura , Estados Unidos
3.
Plant Cell Environ ; 39(1): 222-30, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26177782

RESUMO

The accumulation of ultraviolet (UV)-absorbing compounds (flavonoids and related phenylpropanoids) and the resultant decrease in epidermal UV transmittance (TUV ) are primary protective mechanisms employed by plants against potentially damaging solar UV radiation and are critical components of the overall acclimation response of plants to changing solar UV environments. Whether plants can adjust this UV sunscreen protection in response to rapid changes in UV, as occurs on a diurnal basis, is largely unexplored. Here, we use a combination of approaches to demonstrate that plants can modulate their UV-screening properties within minutes to hours, and these changes are driven, in part, by UV radiation. For the cultivated species Abelmoschus esculentus, large (30-50%) and reversible changes in TUV occurred on a diurnal basis, and these adjustments were associated with changes in the concentrations of whole-leaf UV-absorbing compounds and several quercetin glycosides. Similar results were found for two other species (Vicia faba and Solanum lycopersicum), but no such changes were detected in Zea mays. These findings reveal a much more dynamic UV-protection mechanism than previously recognized, raise important questions concerning the costs and benefits of UV-protection strategies in plants and have practical implications for employing UV to enhance crop vigor and quality in controlled environments.


Assuntos
Abelmoschus/efeitos da radiação , Flavonoides/efeitos da radiação , Hibiscus/efeitos da radiação , Solanum lycopersicum/efeitos da radiação , Vicia faba/efeitos da radiação , Zea mays/efeitos da radiação , Abelmoschus/fisiologia , Aclimatação , Ritmo Circadiano , Flavonoides/fisiologia , Hibiscus/fisiologia , Solanum lycopersicum/fisiologia , Epiderme Vegetal/fisiologia , Epiderme Vegetal/efeitos da radiação , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Luz Solar , Raios Ultravioleta , Vicia faba/fisiologia , Zea mays/fisiologia
4.
Plant Physiol Biochem ; 93: 94-100, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25465528

RESUMO

The accumulation of UV-absorbing compounds (flavonoids and other phenylpropanoid derivatives) and resultant decrease in the UV transmittance of the epidermis in leaves (TUV), is a primary protective mechanism against the potentially deleterious effects of UV radiation and is a critical component of the overall acclimation response of plants to changing UV environments. Traditional measurements of TUV were laborious, time-consuming and destructive or invasive, thus limiting their ability to efficiently make multiple measurements of the optical properties of plants in the field. The development of rapid, nondestructive optical methods of determining TUV has permitted the examination of UV optical properties of leaves with increased replication, on a finer time scale, and enabled repeated sampling of the same leaf over time. This technology has therefore allowed for studies examining acclimation responses to UV in plants in ways not previously possible. Here we provide a brief review of these earlier studies examining leaf UV optical properties and some of their important contributions, describe the principles by which the newer non-invasive measurements of epidermal UV transmittance are made, and highlight several case studies that reveal how this technique is providing new insights into this UV acclimation response in plants, which is far more plastic and dynamic than previously thought.


Assuntos
Aclimatação/efeitos da radiação , Epiderme Vegetal/metabolismo , Folhas de Planta/metabolismo , Fenômenos Fisiológicos Vegetais/efeitos da radiação , Raios Ultravioleta , Aclimatação/genética , Epiderme Vegetal/genética , Folhas de Planta/genética , Fenômenos Fisiológicos Vegetais/genética
5.
Tree Physiol ; 34(1): 39-48, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24436338

RESUMO

Shrubs of the Great Basin desert in Utah are subjected to a prolonged summer drought with the potential consequence of reduced water transport capability of the xylem due to drought-induced cavitation. Hydraulic redistribution (HR) is the passive movement of water from deep to shallow soil through plant roots. Hydraulic redistribution can increase water availability in shallow soil and ameliorate drought stress, providing better soil and root water status, which could affect shallow root conductivity (Ks) and native root embolism. We tested this hypothesis in an Artemisia tridentata Nutt. mono-specific stand grown in a common garden in Utah. We enhanced HR artificially by applying a once a week deep-irrigation treatment increasing the water potential gradient between deep and shallow soil layers. Plants that were deep-watered had less negative water potentials and greater stomatal conductance and transpiration rates than non-watered control plants. After irrigation with labeled water (δD), xylem water in stems and shallow roots of watered shrubs was enriched with respect to control shrubs, a clear indication of deep water uptake and HR. Shallow root conductivity was threefold greater and shrubs experienced lower native embolism when deep-watered. We found clear evidence of water transfer between deep and shallow roots through internal HR that delayed depletion of shallow soil water content, maintained Ks and prevented root embolism. Overall, our results show a positive effect of HR on root water transport capacity in otherwise dry soil, with important implications for plant water status.


Assuntos
Artemisia/fisiologia , Transpiração Vegetal/fisiologia , Água/fisiologia , Transporte Biológico , Secas , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Estações do Ano , Solo/química , Árvores/fisiologia , Utah , Xilema/fisiologia
6.
Funct Plant Biol ; 41(8): 812-819, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32481035

RESUMO

In arid systems, most plant mortality occurs during long drought periods when water is not available for plant uptake. In these systems, plants often benefit from scarce rain events occurring during drought but some of the mechanisms underlying this water use remain unknown. In this context, plant water use and redistribution after a large rain event could be a mechanism that allows deep-rooted shrubs to conservatively use water during drought. We tested this hypothesis by comparing soil and plant water dynamics in Artemisia tridentata ssp. vaseyana (Rydb.) Beetle shrubs that either received a rain event (20mm) or received no water. Soil water content (SWC) increased in shallow layers after the event and increased in deep soil layers through hydraulic redistribution (HR). Our results show that Artemisia shrubs effectively redistributed the water pulse downward recharging deep soil water pools that allowed greater plant water use throughout the subsequent drought period, which ameliorated plant water potentials. Shrubs used shallow water pools when available and then gradually shifted to deep-water pools when shallow water was being used up. Both HR recharge and the shift to shallow soil water use helped conserve deep soil water pools. Summer water uptake in Artemisia not only improved plant water relations but also increased deep soil water availability during drought.

7.
Physiol Plant ; 149(2): 200-13, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23330642

RESUMO

Epidermal UV transmittance (TUV ) and UV-absorbing compounds were measured in sun and shade leaves of Populus tremuloides and Vicia faba exposed to contrasting light environments under field conditions to evaluate UV acclimation potentials and regulatory roles of photosynthetically active radiation (PAR) and UV in UV-shielding. Within a natural canopy of P. tremuloides, TUV ranged from 4 to 98% and showed a strong nonlinear relationship with mid-day horizontal fluxes of PAR [photon flux density (PFD) = 6-1830 µmol m⁻² s⁻¹]; similar patterns were found for V. faba leaves that developed under a comparable PFD range. A series of field transfer experiments using neutral-density shade cloth and UV blocking/transmitting films indicated that PAR influenced TUV during leaf development to a greater degree than UV, and shade leaves of both species increased their UV-shielding when exposed to full sun; however, this required the presence of UV, with both UV-A and UV-B required for full acclimation. TUV of sun leaves of both species was largely unresponsive to shade either with or without UV. In most, but not all cases, changes in TUV were associated with alterations in the concentration of whole-leaf UV-absorbing compounds. These results suggest that, (1) moderate-to-high levels of PAR alone during leaf development can induce substantial UV-protection in field-grown plants, (2) mature shade leaves have the potential to adjust their UV-shielding which may reduce the detrimental effects of UV that could occur following sudden exposures to high light and (3) under field conditions, PAR and UV play different roles in regulating UV-shielding during and after leaf development.


Assuntos
Epiderme Vegetal/fisiologia , Folhas de Planta/fisiologia , Populus/fisiologia , Vicia faba/fisiologia , Clorofila/química , Clorofila/metabolismo , Relação Dose-Resposta à Radiação , Ecossistema , Fluorescência , Epiderme Vegetal/efeitos da radiação , Folhas de Planta/efeitos da radiação , Populus/efeitos da radiação , Luz Solar , Raios Ultravioleta , Vicia faba/efeitos da radiação
8.
PLoS One ; 7(10): e48406, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23119006

RESUMO

We document high rates of triploidy in aspen (Populus tremuloides) across the western USA (up to 69% of genets), and ask whether the incidence of triploidy across the species range corresponds with latitude, glacial history (as has been documented in other species), climate, or regional variance in clone size. Using a combination of microsatellite genotyping, flow cytometry, and cytology, we demonstrate that triploidy is highest in unglaciated, drought-prone regions of North America, where the largest clone sizes have been reported for this species. While we cannot completely rule out a low incidence of undetected aneuploidy, tetraploidy or duplicated loci, our evidence suggests that these phenomena are unlikely to be significant contributors to our observed patterns. We suggest that the distribution of triploid aspen is due to a positive synergy between triploidy and ecological factors driving clonality. Although triploids are expected to have low fertility, they are hypothesized to be an evolutionary link to sexual tetraploidy. Thus, interactions between clonality and polyploidy may be a broadly important component of geographic speciation patterns in perennial plants. Further, cytotypes are expected to show physiological and structural differences which may influence susceptibility to ecological factors such as drought, and we suggest that cytotype may be a significant and previously overlooked factor in recent patterns of high aspen mortality in the southwestern portion of the species range. Finally, triploidy should be carefully considered as a source of variance in genomic and ecological studies of aspen, particularly in western U.S. landscapes.


Assuntos
Populus/genética , Triploidia , Repetições de Microssatélites/genética , América do Norte
9.
J Photochem Photobiol B ; 97(1): 48-53, 2009 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-19709898

RESUMO

Many experiments examining plant responses to enhanced ultraviolet-B radiation (280-315nm) simply compare an enhanced UV-B treatment with ambient UV-B (or no UV-B radiation in most greenhouse and controlled-environment studies). Some more detailed experiments utilize multiple levels of UV-B radiation. A number of different techniques have been used to adjust the UV dose. One common technique is to place racks of fluorescent UV-emitting lamps at different heights above the plant canopy. However, the lamps and associated support structure cast shadows on the plant bed below. We calculated one example of the sequence of shade intervals for two common heights of lamp racks and show the patterns and duration of shade which the plants receive is distributed differently over the course of the day for different heights of the lamp racks. We also conducted a greenhouse experiment with plants (canola, sunflower and maize) grown under unenergized lamp racks suspended at the same two heights above the canopy. Growth characteristics differed in unpredictable ways between plants grown under the two heights of lamp racks. These differences could enhance or obscure potential UV-B effects. Also, differences in leaf mass per unit foliage area, which were observed in this experiment, could contribute to differences in plant UV-B sensitivity. We recommend the use of other techniques for achieving multiple doses of UV-B radiation. These range from simple and inexpensive approaches (e.g., wrapping individual fluorescent tubes in layers of a neutral-density filter such as cheese cloth) to more technical and expensive alternatives (e.g., electronically modulated lamp control systems). These choices should be determined according to the goals of the particular experiment.


Assuntos
Folhas de Planta/efeitos da radiação , Plantas/efeitos da radiação , Raios Ultravioleta , Ambiente Controlado , Efeito Estufa , Desenvolvimento Vegetal
10.
Physiol Plant ; 133(2): 363-72, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18346077

RESUMO

Studies were conducted on three herbaceous plant species growing in naturally high solar UV environments in the subalpine of Mauna Kea, Hawaii, USA, to determine if diurnal changes in epidermal UV transmittance (T(UV)) occur in these species, and to test whether manipulation of the solar radiation regime could alter these diurnal patterns. Additional field studies were conducted at Logan, Utah, USA, to determine if solar UV was causing diurnal T(UV) changes and to evaluate the relationship between diurnal changes in T(UV) and UV-absorbing pigments. Under clear skies, T(UV), as measured with a UV-A-pulse amplitude modulation fluorometer for leaves of Verbascum thapsus and Oenothera stricta growing in native soils and Vicia faba growing in pots, was highest at predawn and sunset and lowest at midday. These patterns in T(UV) closely tracked diurnal changes in solar radiation and were the result of correlated changes in fluorescence induced by UV-A and blue radiation but not photochemical efficiency (F(v)/F(m)) or initial fluorescence yield (F(o)). The magnitude of the midday reduction in T(UV) was greater for young leaves than for older leaves of Verbascum. Imposition of artificial shade eliminated the diurnal changes in T(UV) in Verbascum, but reduction in solar UV had no effect on diurnal T(UV) changes in Vicia. In Vicia, the diurnal changes in T(UV) occurred without detectable changes in the concentration of whole-leaf UV-absorbing compounds. Results suggest that plants actively control diurnal changes in UV shielding, and these changes occur in response to signals other than solar UV; however, the underlying mechanisms responsible for rapid changes in T(UV) remain unclear.


Assuntos
Ritmo Circadiano/efeitos da radiação , Meio Ambiente , Oenothera/efeitos da radiação , Epiderme Vegetal/fisiologia , Raios Ultravioleta , Verbascum/efeitos da radiação , Vicia faba/efeitos da radiação , Fotossíntese/efeitos da radiação , Pigmentos Biológicos/metabolismo , Epiderme Vegetal/efeitos da radiação , Folhas de Planta/efeitos da radiação
11.
Tree Physiol ; 26(11): 1469-76, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16877331

RESUMO

Juniper species are noted for long-lived foliage, low and persistent gas exchange activity and drought tolerance. Because leaves and roots of the same species are thought to be similar in structure and life history, we hypothesized that Juniperus osteosperma (Torr.) Little (Utah juniper) fine roots would reflect the persistent aboveground foliage characteristic of this species. We monitored fine roots, less than 1 mm in diameter, by minirhizotron imaging to a depth of 150 cm over two growing seasons from April 2002 to December 2003. We measured fine root numbers, lengths and diameters, and noted the time of birth and death of root segments. We correlated our root data with soil water potential measured by thermocouple psychrometry and ecosystem evapotranspiration measured by ecosystem eddy flux. Median fine root lifespan, determined by the Kaplan-Meier product-limit method, was about one year, much less than foliage lifespan estimates of more than five years. Yet, roots of juniper live much longer than those of other Great Basin species. The median survivorship of shallow and deep roots was 144 and 448 days, respectively. Production of new roots was observed during periods of favorable soil water potential and there was a seasonal progression of increased new roots and root length during the warm season toward lower soil depths with root loss in the upper soil layers. This was also reflected in water extraction which progressed to greater soil depths later in the warm season. Aboveground, rates of ecosystem evapotranspiration decreased with decreasing soil water potentials in a similar manner in both 2002 and 2003, reflecting the relocation of roots to available water at depth. Juniper exhibited a flexible root depth distribution throughout the 20 months of this study, indicating the potential to respond to shifting soil water resources despite long fine root lifespans.


Assuntos
Juniperus/fisiologia , Raízes de Plantas/fisiologia , Estações do Ano , Solo/análise , Água/análise , Clima , Ecossistema , Folhas de Planta/fisiologia , Raízes de Plantas/anatomia & histologia , Transpiração Vegetal/fisiologia , Utah
12.
New Phytol ; 165(1): 171-80, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15720631

RESUMO

Fine roots of an annual grass, a perennial grass and a perennial shrub were examined. Based on life histories and tissue composition, we expected the greatest root persistence for the shrub and shortest for the annual grass. Roots were observed with minirhizotrons over 2 yr for number, length and diameter changes. A Cox proportional hazard regression correlated root persistence with soil water, depth, diameter and date of production. In 2001, grass roots had similar persistence times, but shrub roots had the shortest. In 2002, the annual had the longest median root persistence, the perennial grass intermediate and the perennial shrub had the shortest. All species responded similarly to the magnitude of seasonal precipitation; root numbers increased with favorable soil moisture and disappeared with drying; fewer, thinner roots at greater soil depths were found in the drier year (2001). Root persistence increased with soil moisture, diameter and earlier appearance in the spring. Plasticity in root morphology and placement was influenced by water availability, yet persistence was surprisingly contrary to expectations.


Assuntos
Agropyron/anatomia & histologia , Artemisia/anatomia & histologia , Bromus/anatomia & histologia , Ecossistema , Raízes de Plantas/anatomia & histologia , Utah
13.
Oecologia ; 137(2): 161-70, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12838405

RESUMO

A recent meta-analysis of meta-analyses by Møller and Jennions suggested that ecologists using statistical models are explaining between 2.5% and 5.42% of the variability in ecological studies. Although we agree that there is considerable variability in ecological systems that is not explained, we disagree with the approach and general conclusions of Møller and Jennions. As an alternate perspective, we explored the question: "How much ecological variation in relationships is not explained?" We did this by examining published studies in five different journals representative of the numerous sub-disciplines of ecology. We quantified the proportion of variance not explained in statistical models as the residual or random error compared to the total variation in the data set. Our results indicate that statistical models explain roughly half of the variation in variables of interest, vastly different from the 2.5%-5.42% reported by Møller and Jennions. This difference resulted largely from a different level of analysis: we considered the original study to be the appropriate level for quantifying variability while Møller and Jennions combined studies at different temporal and spatial scales and attempted to find universal single-factor relationships between ecological variables across study organisms or locations. Therefore, we believe that Møller and Jennions actually measured the universality of single factor effects across multiple ecological systems, not the amount of variability in ecological studies explained by ecologists. This study, combined with Møller and Jennions', illustrates importance of applying statistical models appropriately to assess ecological relationships.


Assuntos
Ecologia , Metanálise como Assunto , Modelos Estatísticos , Animais , Dinâmica Populacional , Reprodutibilidade dos Testes
14.
Oecologia ; 134(3): 317-24, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12647138

RESUMO

Resources in the Great Basin of western North America often occur in pulses, and plant species must rapidly respond to temporary increases in water and nutrients during the growing season. A field study was conducted to evaluate below ground responses of Artemisia tridentata and Agropyron desertorum, common Great Basin shrub and grass species, respectively, to simulated 5-mm (typical summer rain) and 15-mm (large summer rain) summer rainfall events. The simulated rainfall was labeled with K(15)NO(3) so that timing of plant nitrogen uptake could be monitored. In addition, soil NH(4)(+) and NO(3)(-) concentrations and physiological uptake capacities for NO(3)(-) and NH(4)(+) were determined before and after the rainfall events. Root growth in the top 15 cm of soil was monitored using a minirhizotron system. Surprisingly, there was no difference in the amount of labeled N acquired in response to the two rainfall amounts by either species during the 7-day sample period. However, there were differences between species in the timing of labeled N uptake. The N label was detected in above ground tissue of Agropyron within 1 h of the simulated rainfall events, but not until 24 h after the rainfall in Artemisia. For both Agropyron and Artemisia, root uptake capacity was similarly affected by the 5-mm and 15-mm rainfall. There was, however, a greater increase in uptake capacity for NH(4)(+) than for NO(3)(-), and the 15-mm event resulted in a longer response. No root growth occurred in either species in response to either rainfall event during this 8-day period. The results of this study indicate that these species are capable of utilizing nitrogen pulses following even small summer rainfall events during the most stressful period of the summer and further emphasize the importance of small precipitation events in arid systems.


Assuntos
Agropyron/metabolismo , Artemisia/metabolismo , Nitrogênio/farmacocinética , Raízes de Plantas/metabolismo , Absorção , Agropyron/crescimento & desenvolvimento , Artemisia/crescimento & desenvolvimento , Disponibilidade Biológica , Nitratos/análise , Raízes de Plantas/crescimento & desenvolvimento , Compostos de Amônio Quaternário/análise , Chuva , Estações do Ano , Solo/análise , Utah
15.
Tree Physiol ; 22(17): 1221-30, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12464575

RESUMO

Water use and carbon acquisition were examined in a northern Utah population of Juniperus osteosperma (Torr.) Little. Leaf-level carbon assimilation, which was greatest in the spring and autumn, was limited by soil water availability. Gas exchange, plant water potential and tissue hydrogen stable isotopic ratio (deltaD) data suggested that plants responded rapidly to summer rain events. Based on a leaf area index of 1.4, leaf-level water use and carbon acquisition scaled to canopy-level means of 0.59 mm day(-1) and 0.13 mol m(-2) ground surface day(-1), respectively. Patterns of soil water potential indicated that J. osteosperma dries the soil from the surface downward to a depth of about 1 m. Hydraulic redistribution is a significant process in soil water dynamics. Eddy covariance data indicated a mean evapotranspiration rate of 0.85 mm day(-1) from March to October 2001, during which period the juniper population at the eddy flux site was a net source of CO2 (3.9 mol m(-2) ground area). We discuss these results in relation to the rapid range expansion of juniper species during the past century.


Assuntos
Juniperus/fisiologia , Árvores/fisiologia , Carbono/metabolismo , Carbono/fisiologia , Clima , Ecossistema , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Solo , Utah , Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...