Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1648(Pt B): 603-616, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-26923166

RESUMO

In neurological disorders, both acute and chronic neural stress can disrupt cellular proteostasis, resulting in the generation of pathological protein. However in most cases, neurons adapt to these proteostatic perturbations by activating a range of cellular protective and repair responses, thus maintaining cell function. These interconnected adaptive mechanisms comprise a 'proteostasis network' and include the unfolded protein response, the ubiquitin proteasome system and autophagy. Interestingly, several recent studies have shown that these adaptive responses can be stimulated by preconditioning treatments, which confer resistance to a subsequent toxic challenge - the phenomenon known as hormesis. In this review we discuss the impact of adaptive stress responses stimulated in diverse human neuropathologies including Parkinson׳s disease, Wolfram syndrome, brain ischemia, and brain cancer. Further, we examine how these responses and the molecular pathways they recruit might be exploited for therapeutic gain. This article is part of a Special Issue entitled SI:ER stress.


Assuntos
Autofagia , Doenças do Sistema Nervoso , Deficiências na Proteostase/complicações , Resposta a Proteínas não Dobradas/fisiologia , Animais , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Doenças do Sistema Nervoso/complicações , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/terapia , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo
3.
Cell Death Differ ; 20(1): 108-16, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22898807

RESUMO

Irradiated or injured cells enter apoptosis, and in turn, promote proliferation of surrounding unaffected cells. In Drosophila, apoptotic cells have an active role in proliferation, where the caspase Dronc and p53 induce mitogen expression and growth in the surrounding tissues. The Drosophila p53 gene structure is conserved and encodes at least two protein isoforms: a full-length isoform (Dp53) and an N-terminally truncated isoform (DΔNp53). Historically, DΔNp53 was the first p53 isoform identified and was thought to be responsible for all p53 biological activities. It was shown that DΔNp53 induces apoptosis by inducing the expression of IAP antagonists, such as Reaper. Here we investigated the roles of Dp53 and DΔNp53 in apoptosis and apoptosis-induced proliferation. We found that both isoforms were capable of activating apoptosis, but that they each induced distinct IAP antagonists. Expression of DΔNp53 induced Wingless (Wg) expression and enhanced proliferation in both 'undead cells' and in 'genuine' apoptotic cells. In contrast to DΔNp53, Dp53 did not induce Wg expression in the absence of the endogenous p53 gene. Thus, we propose that DΔNp53 is the main isoform that regulates apoptosis-induced proliferation. Understanding the roles of Drosophila p53 isoforms in apoptosis and in apoptosis-induced proliferation may shed new light on the roles of p53 isoforms in humans, with important implications in cancer biology.


Assuntos
Apoptose/fisiologia , Drosophila/citologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Animais Geneticamente Modificados , Processos de Crescimento Celular/fisiologia , Drosophila/genética , Drosophila/metabolismo , Isoformas de Proteínas , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Cell Death Differ ; 19(3): 470-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21886178

RESUMO

Active caspases execute apoptosis to eliminate superfluous or harmful cells in animals. In Drosophila, living cells prevent uncontrolled caspase activation through an inhibitor of apoptosis protein (IAP) family member, dIAP1, and apoptosis is preceded by the expression of IAP-antagonists, such as Reaper, Hid and Grim. Strong genetic modifiers of this pathway include another IAP family gene encoding an E2 ubiquitin conjugating enzyme domain, dBruce. Although the genetic effects of dBruce mutants are well documented, molecular targets of its encoded protein have remained elusive. Here, we report that dBruce targets Reaper for ubiquitination through an unconventional mechanism. Specifically, we show that dBruce physically interacts with Reaper, dependent upon Reaper's IAP-binding (IBM) and GH3 motifs. Consistently, Reaper levels were elevated in a dBruce -/- background. Unexpectedly, we found that dBruce also affects the levels of a mutant form of Reaper without any internal lysine residues, which normally serve as conventional ubiquitin acceptor sites. Furthermore, we were able to biochemically detect ubiquitin conjugation on lysine-deficient Reaper proteins, and knockdown of dBruce significantly reduced the extent of this ubiquitination. Our results indicate that dBruce inhibits apoptosis by promoting IAP-antagonist ubiquitination on unconventional acceptor sites.


Assuntos
Apoptose/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Ubiquitinação/fisiologia , Motivos de Aminoácidos , Animais , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Proteínas Inibidoras de Apoptose/genética , Mutação , Ubiquitina/genética , Ubiquitina/metabolismo
5.
Cell Death Differ ; 14(4): 861-71, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17205079

RESUMO

Inhibitors of apoptosis proteins (IAPs) suppress cell death by inactivating proapoptotic regulators, and therefore play important roles in controlling apoptosis in normal and malignant cells. Many IAPs are ubiquitin ligases, and their activity is mediated via ubiquitination and subsequent degradation of their targets. Here we corroborate a previous observation that DIAP1 (Drosophila IAP1) can be degraded via a two-step mechanism: (i) limited caspase-mediated cleavage and (ii) degradation of the released fragment via the ubiquitin N-end rule pathway. Yet, we demonstrate that this pathway is not the only one involved in DIAP1 degradation, and the intact protein can be degraded independent of prior caspase cleavage. Importantly, this mode of degradation does not require the RING-finger-mediated autoubiquitinating activity of DIAP1, believed to target many RING-finger E3s for self-destruction. Our preliminary data suggest that DIAP2 mediates DIAP1 degradation, suggesting a novel regulatory loop within the apoptotic pathway. Studying the role of the autoubiquitinating activity of DIAP1, we demonstrate that it does not involve formation of Lys48-based polyubiquitin chains, but probably chains linked via Lys63. Our preliminary data suggest that the autoubiquitination serves to attenuate the ligase activity of DIAP1 towards its exogenous substrates.


Assuntos
Apoptose/fisiologia , Proteínas de Drosophila/metabolismo , Peptídeos/metabolismo , Proteínas Recombinantes/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Animais , Caspases/metabolismo , Células Cultivadas , Drosophila , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Regulação Enzimológica da Expressão Gênica , Humanos , Proteínas Inibidoras de Apoptose , Mutagênese , Peptídeos/genética , Ligação Proteica/fisiologia , Biossíntese de Proteínas/fisiologia , Interferência de RNA , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Enzimas de Conjugação de Ubiquitina , Ubiquitina-Proteína Ligases/genética , Dedos de Zinco
6.
Development ; 126(22): 5137-48, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10529430

RESUMO

To regulate their target genes, the Hox proteins of Drosophila often bind to DNA as heterodimers with the homeodomain protein Extradenticle (EXD). For EXD to bind DNA, it must be in the nucleus, and its nuclear localization requires a third homeodomain protein, Homothorax (HTH). Here we show that a conserved N-terminal domain of HTH directly binds to EXD in vitro, and is sufficient to induce the nuclear localization of EXD in vivo. However, mutating a key DNA binding residue in the HTH homeodomain abolishes many of its in vivo functions. HTH binds to DNA as part of a HTH/Hox/EXD trimeric complex, and we show that this complex is essential for the activation of a natural Hox target enhancer. Using a dominant negative form of HTH we provide evidence that similar complexes are important for several Hox- and exd-mediated functions in vivo. These data suggest that Hox proteins often function as part of a multiprotein complex, composed of HTH, Hox, and EXD proteins, bound to DNA.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas de Drosophila , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Transporte Biológico , DNA/genética , Proteínas de Ligação a DNA/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Elementos Facilitadores Genéticos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/fisiologia , Proteínas de Insetos/metabolismo , Dados de Sequência Molecular , Sinais de Localização Nuclear , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/fisiologia , Transcrição Gênica
7.
Genes Dev ; 13(13): 1704-16, 1999 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-10398683

RESUMO

We characterize a 37-bp element (fkh[250]) derived from the fork head (fkh) gene, a natural target of the Hox gene Sex combs reduced (Scr). In vitro, Scr cooperatively binds to this DNA with the Hox cofactor Extradenticle (Exd), and the activation of this enhancer in vivo requires Scr and exd. Other Hox/Exd heterodimers do not activate this element in vivo and do not bind this element with high affinity in vitro. The amino-terminal arm of the Scr homeodomain is crucial for the specific activation of this element in vivo. By mutating two base pairs within this element, we can convert the Scr/Exd-binding site to a Hox/Exd consensus site that binds several different Hox/Exd heterodimers. This element, fkh[250(con)], is activated by Scr, Antennapedia (Antp), and Ultrabithorax (Ubx) but repressed by abdominal-A (abd-A). We also show that Scr and Exd are only able to activate the fkh[250] element during the early stages of embryogenesis because, by stage 11, Scr negatively regulates the gene homothorax (hth), which is required for the nuclear localization of Exd. These results suggest that Exd is a specificity cofactor for the trunk Hox genes, and that the control of Exd subcellular localization is a mechanism to regulate Hox activity during development.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Proteínas de Insetos/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Abdome/embriologia , Animais , Proteína do Homeodomínio de Antennapedia , Proteínas de Ligação a DNA/fisiologia , Dimerização , Drosophila melanogaster/embriologia , Embrião não Mamífero/ultraestrutura , Fatores de Transcrição Forkhead , Proteínas de Homeodomínio/fisiologia , Proteínas de Insetos/fisiologia , Morfogênese/genética , Proteínas Nucleares/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Frações Subcelulares/química , Fatores de Transcrição/fisiologia
8.
Genes Dev ; 13(8): 935-45, 1999 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-10215621

RESUMO

The Drosophila PBC protein Extradenticle (Exd) is regulated at the level of its subcellular distribution: It is cytoplasmic in the absence of Homothorax (Hth), a Meis family member, and nuclear in the presence of Hth. Here we present evidence that, in the absence of Hth, Exd is exported from nuclei due to the activity of a nuclear export signal (NES). The activity of this NES is inhibited by the antibiotic Leptomycin B, suggesting that Exd is exported by a CRM1/exportin1-related export pathway. By analyzing the subcellular localization of Exd deletion mutants in imaginal discs and cultured cells, we identified three elements in Exd, a putative NES, a nuclear localization sequence (NLS), and a region required for Hth-mediated nuclear localization. This latter region coincides with a domain in Exd that binds Hth protein in vitro. When Exd is uncomplexed with Hth, the NES dominates over the NLS. When Exd is expressed together with Hth, or when the NES is deleted, Exd is nuclear. Thus, Hth is required to overcome the influence of the NES, possibly by inducing a conformational change in Exd. Finally, we provide evidence that Hth and Exd normally interact in the cytoplasm, and that Hth also has an NLS. We propose that in Exd there exists a balance between the activities of an NES and an NLS, and that Hth alters this balance in favor of the NLS.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila , Proteínas de Homeodomínio/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Transporte Biológico , Núcleo Celular/metabolismo , Galinhas , Proteínas de Ligação a DNA/genética , Drosophila/fisiologia , Mutagênese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/genética
9.
Nature ; 397(6721): 714-9, 1999 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-10067897

RESUMO

During the development of multicellular organisms, gene expression must be tightly regulated, both spatially and temporally. One set of transcription factors that are important in animal development is encoded by the homeotic (Hox) genes, which govern the choice between alternative developmental pathways along the anterior-posterior axis. Hox proteins, such as Drosophila Ultrabithorax, have low DNA-binding specificity by themselves but gain affinity and specificity when they bind together with the homeoprotein Extradenticle (or Pbxl in mammals). To understand the structural basis of Hox-Extradenticle pairing, we determine here the crystal structure of an Ultrabithorax-Extradenticle-DNA complex at 2.4 A resolution, using the minimal polypeptides that form a cooperative heterodimer. The Ultrabithorax and Extradenticle homeodomains bind opposite faces of the DNA, with their DNA-recognition helices almost touching each other. However, most of the cooperative interactions arise from the YPWM amino-acid motif of Ultrabithorax-located amino-terminally to its homeodomain-which forms a reverse turn and inserts into a hydrophobic pocket on the Extradenticle homeodomain surface. Together, these protein-DNA and protein-protein interactions define the general principles by which homeotic proteins interact with Extradenticle (or Pbx1) to affect development along the anterior-posterior axis of animals.


Assuntos
Proteínas de Ligação a DNA/química , DNA/química , Proteínas de Drosophila , Proteínas de Homeodomínio/química , Fatores de Transcrição/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Drosophila , Proteínas de Homeodomínio/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Fatores de Transcrição/metabolismo
10.
Cell ; 91(2): 171-83, 1997 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-9346235

RESUMO

We show that homothorax (hth) is required for the Hox genes to pattern the body of the fruit fly, Drosophila melanogaster. hth is necessary for the nuclear localization of an essential HOX cofactor, Extradenticle (EXD), and encodes a homeodomain protein that shares extensive identity with the product of Meis1, a murine proto-oncogene. MEIS1 is able to rescue hth mutant phenotypes and can induce the cytoplasmic-to-nuclear translocation of EXD in cell culture and Drosophila embryos. Thus, Meis1 is a murine homolog of hth. MEIS1/HTH also specifically binds to EXD with high affinity in vitro. These data suggest a novel and evolutionarily conserved mechanism for regulating HOX activity in which a direct protein-protein interaction between EXD and HTH results in EXD's nuclear translocation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/genética , Proteínas de Homeodomínio/genética , Fatores de Transcrição/metabolismo , Estruturas Animais/fisiologia , Animais , Transporte Biológico/genética , Núcleo Celular/química , Núcleo Celular/metabolismo , Citoplasma/química , Proteínas de Ligação a DNA/análise , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário e Fetal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox/fisiologia , Proteínas de Homeodomínio/metabolismo , Leucemia Mieloide , Camundongos , Dados de Sequência Molecular , Proteína Meis1 , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/análise
11.
Development ; 124(10): 2007-14, 1997 May.
Artigo em Inglês | MEDLINE | ID: mdl-9169847

RESUMO

The homeodomain proteins encoded by the Hox complex genes do not bind DNA with high specificity. In vitro, Hox specificity can be increased by binding to DNA cooperatively with the homeodomain protein extradenticle or its vertebrate homologs, the pbx proteins (together, the PBC family). Here we show that a two basepair change in a Hox-PBC binding site switches the Hox-dependent expression pattern generated in vivo, from labial to Deformed. The change in vivo correlates with an altered Hox binding specificity in vitro. Further, we identify similar Deformed-PBC binding sites in the Deformed and Hoxb-4 genes and show that they generate Deformed or Hoxb-4 expression patterns in Drosophila and mouse embryos, respectively. These results suggest a model in which Hox-PBC binding sites play an instructive role in Hox specificity by promoting the formation of different Hox-PBC heterodimers in vivo. Thus, the choice of Hox partner, and therefore Hox target genes, depends on subtle differences between Hox-PBC binding sites.


Assuntos
DNA/metabolismo , Proteínas de Drosophila , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Homeobox/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Sítios de Ligação/genética , Proteínas de Ligação a DNA/metabolismo , Dimerização , Drosophila/embriologia , Drosophila/genética , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Proteínas de Insetos/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Regiões Promotoras Genéticas/genética , Sequências Repetitivas de Ácido Nucleico/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética
12.
Genes Dev ; 11(10): 1327-40, 1997 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-9171376

RESUMO

We present evidence that the in vivo activity of the HOX protein Antennapedia (ANTP) is modified because of phosphorylation by the serine/threonine kinase casein kinase II (CKII). Using an in vivo assay a form of ANTP that has alanine substitutions at its CKII target sites has, in addition to wild-type ANTP functions, the ability to alter severely thoracic and abdominal development. The novel functions of this protein suggest that this form of ANTP is not suppressed phenotypically by the more posterior homeotic proteins. In contrast, the in vivo activity of a form of ANTP that contains acidic amino acid substitutions at its CKII target sites, thereby mimicking a constitutively phosphorylated ANTP protein, is greatly reduced. This hypoactive form of ANTP, but not the alanine-substituted form, is also reduced in its ability to bind to DNA cooperatively with the homeodomain protein Extradenticle. Our results suggest that phosphorylation of ANTP by CKII is important for preventing inappropriate activities of this homeotic protein during embryogenesis.


Assuntos
Drosophila melanogaster/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição , Sequência de Aminoácidos , Animais , Proteína do Homeodomínio de Antennapedia , Caseína Quinase II , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila , Genes Homeobox , Marcadores Genéticos , Dados de Sequência Molecular , Fenótipo , Fosforilação , Ligação Proteica
13.
EMBO J ; 16(24): 7402-10, 1997 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-9405369

RESUMO

The homeotic proteins encoded by the genes of the Drosophila HOM and the vertebrate HOX complexes do not bind divergent DNA sequences with a high selectivity. In vitro, HOM (HOX) specificity can be increased by the formation of heterodimers with Extradenticle (EXD) or PBX homeodomain proteins. We have identified a single essential Labial (LAB)/EXD-binding site in a Decapentaplegic (DPP)-responsive enhancer of the homeotic gene lab which drives expression in the developing midgut. We show that LAB and EXD bind cooperatively to the site in vitro, and that the expression of the enhancer in vivo requires exd and lab function. In addition, point mutations in either the EXD or the LAB subsite compromise enhancer function, strongly suggesting that EXD and LAB bind to this site in vivo. Interestingly, we found that the activity of the enhancer is only stimulated by DPP signaling significantly upon binding of LAB and EXD. Thus, the enhancer appears to integrate positional information via the homeotic gene lab, and spatiotemporal information via DPP signaling; only when these inputs act in concert in an endodermal cell is the enhancer fully active. Our results illustrate how a tissue-specific response to DPP can be generated through synergistic effects on an enhancer carrying both DPP- and HOX-responsive sequences.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Genes Homeobox , Proteínas de Homeodomínio/biossíntese , Proteínas de Insetos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Dimerização , Genes de Insetos , Proteínas de Insetos/biossíntese , Proteínas de Insetos/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Vertebrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...