Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 2779, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589685

RESUMO

The generation of a register of highly coherent, but independent, qubits is a prerequisite to performing universal quantum computation. Here we introduce a qubit encoded in two nuclear spin states of a single 87Sr atom and demonstrate coherence approaching the minute-scale within an assembled register of individually-controlled qubits. While other systems have shown impressive coherence times through some combination of shielding, careful trapping, global operations, and dynamical decoupling, we achieve comparable coherence times while individually driving multiple qubits in parallel. We highlight that even with simultaneous manipulation of multiple qubits within the register, we observe coherence in excess of 105 times the current length of the operations, with [Formula: see text] seconds. We anticipate that nuclear spin qubits will combine readily with the technical advances that have led to larger arrays of individually trapped neutral atoms and high-fidelity entangling operations, thus accelerating the realization of intermediate-scale quantum information processors.

2.
Opt Lett ; 46(10): 2280-2283, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33988564

RESUMO

Many emerging, high-speed, reconfigurable optical systems are limited by routing complexity when producing dynamic, two-dimensional (2D) electric fields. We propose a gradient-based inverse-designed, static phase-mask doublet to generate arbitrary 2D intensity wavefronts using a one-dimensional (1D) intensity spatial light modulator (SLM). We numerically simulate the capability of mapping each point in a 49 element 1D array to a distinct $7 \times 7$ 2D spatial distribution. Our proposed method will significantly relax the routing complexity of electrical control signals, possibly enabling high-speed, sub-wavelength 2D SLMs leveraging new materials and pixel architectures.

3.
Opt Lett ; 44(12): 3058-3061, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31199380

RESUMO

Tunable silicon nitride nanophotonic resonators are a critical building block for integrated photonic systems in the visible wavelength range. We experimentally demonstrate a thermally tunable polymer-embedded silicon nitride nanobeam cavity with a tuning efficiency of 44 pm/°C and 0.13 nm/mW in the near-visible wavelength range. The large tuning efficiency comes from the high thermo-optic coefficient of the SU-8 polymer and the "air-mode" cavity design, where a large portion of the cavity field is confined inside the polymer region. The demonstrated resonator will enable locally tunable cavity quantum electrodynamic experiments in the silicon nitride platform.

4.
Nano Lett ; 18(10): 6404-6410, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30251868

RESUMO

Engineering an array of precisely located cavity-coupled active media poses a major experimental challenge in the field of hybrid integrated photonics. We deterministically position solution-processed colloidal quantum dots (QDs) on high quality (Q)-factor silicon nitride nanobeam cavities and demonstrate light-matter coupling. By lithographically defining a window on top of an encapsulated cavity that is cladded in a polymer resist, and spin coating the QD solution, we can precisely control the placement of the QDs, which subsequently couple to the cavity. We show rudimentary control of the number of QDs coupled to the cavity by modifying the size of the window. Furthermore, we demonstrate Purcell enhancement and saturable photoluminescence in this QD-cavity platform. Finally, we deterministically position QDs on a photonic molecule and observe QD-coupled cavity supermodes. Our results pave the way for precisely controlling the number of QDs coupled to a cavity by engineering the window size, the QD dimension, and the solution chemistry and will allow advanced studies in cavity enhanced single photon emission, ultralow power nonlinear optics, and quantum many-body simulations with interacting photons.

5.
Rev Sci Instrum ; 88(1): 013101, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28147635

RESUMO

We present a novel approach to enhancing the bandwidth of a feedback-controlled mechanical system by digitally canceling acoustical resonances (poles) and anti-resonances (zeros) in the open-loop response via an FPGA FIR filter. By performing a real-time convolution of the feedback error signal with an inverse filter, we can suppress arbitrarily many poles and zeros below 100 kHz, each with a linewidth down to 10 Hz. We demonstrate the efficacy of this technique by canceling the ten largest mechanical resonances and anti-resonances of a high-finesse optical resonator, thereby enhancing the unity gain frequency by more than an order of magnitude. This approach is applicable to a broad array of stabilization problems including optical resonators, external cavity diode lasers, and scanning tunneling microscopes and points the way to applying modern optimal control techniques to intricate linear acoustical systems.

6.
Nature ; 534(7609): 671-5, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27281214

RESUMO

Synthetic photonic materials are an emerging platform for exploring the interface between microscopic quantum dynamics and macroscopic material properties. Photons experiencing a Lorentz force develop handedness, providing opportunities to study quantum Hall physics and topological quantum science. Here we present an experimental realization of a magnetic field for continuum photons. We trap optical photons in a multimode ring resonator to make a two-dimensional gas of massive bosons, and then employ a non-planar geometry to induce an image rotation on each round-trip. This results in photonic Coriolis/Lorentz and centrifugal forces and so realizes the Fock­Darwin Hamiltonian for photons in a magnetic field and harmonic trap. Using spatial- and energy-resolved spectroscopy, we track the resulting photonic eigenstates as radial trapping is reduced, finally observing a photonic Landau level at degeneracy. To circumvent the challenge of trap instability at the centrifugal limit, we constrain the photons to move on a cone. Spectroscopic probes demonstrate flat space (zero curvature) away from the cone tip. At the cone tip, we observe that spatial curvature increases the local density of states, and we measure fractional state number excess consistent with the Wen­Zee theory, providing an experimental test of this theory of electrons in both a magnetic field and curved space. This work opens the door to exploration of the interplay of geometry and topology, and in conjunction with Rydberg electromagnetically induced transparency, enables studies of photonic fractional quantum Hall fluids and direct detection of anyons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...