Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 278(4): C822-33, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10751330

RESUMO

PGE(2) levels are altered in human epidermis after in vivo wounding; however, mechanisms modulating PGE(2) production in activated keratinocytes are unclear. In previous studies, we showed that PGE(2) is a growth-promoting autacoid in human primary keratinocyte cultures, and its production is modulated by plating density, suggesting that regulated PGE(2) synthesis is an important component of wound healing. Here, we examine the role of phospholipase A(2) (PLA(2)) and cyclooxygenase (COX) enzymes in modulation of PGE(2) production. We report that the increased PGE(2) production that occurs in keratinocytes grown in nonconfluent conditions is also observed after in vitro wounding, indicating that similar mechanisms are involved. This increase was associated with coordinate upregulation of both COX-2 and secretory PLA(2) (sPLA(2)) proteins. Increased sPLA(2) activity was also observed. By RT-PCR, we identified the presence of type IIA and type V sPLA(2), along with the M-type sPLA(2) receptor. Thus the coordinate expression of sPLA(2) and COX-2 may be responsible for the increased prostaglandin synthesis in activated keratinocytes during wound repair.


Assuntos
Isoenzimas/metabolismo , Queratinócitos/fisiologia , Fosfolipases A/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Células Cultivadas , Ciclo-Oxigenase 2 , Dinoprostona/metabolismo , Ácidos Graxos/metabolismo , Humanos , Queratinócitos/enzimologia , Queratinócitos/metabolismo , Queratinócitos/patologia , Proteínas de Membrana , Receptores de Superfície Celular/metabolismo , Receptores da Fosfolipase A2 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Cicatrização/fisiologia
2.
J Biol Chem ; 273(49): 32627-35, 1998 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-9830002

RESUMO

Intracellular Ca2+ pools play an essential role in generating Ca2+ signals. The heterogeneity of intracellular Ca2+ pools reflects the complex and dynamic character of the endoplasmic reticulum within which they reside. Translocation of Ca2+ between distinct subcompartments of the endoplasmic reticulum is mediated by a sensitive and specific GTP-activated process involving formation of reversible communicating junctions (Rys-Sikora, K. E., Ghosh, T. K., and Gill, D. L. (1994) J. Biol. Chem. 269, 31607-31613). In the presence of palmitate at 10 microM or above, this GTP-activated mechanism mediates substantial Ca2+ accumulation within a specific Ca2+-pumping pool. The fatty acid- and GTP-dependent accumulation of Ca2+ was highly chain length-specific; pentadecanoate (C15) and palmitate (C16) were equally effective, whereas fatty acids of shorter or longer chain length were either marginally effective or devoid of effect. Fatty acids with one or more unsaturated carbons were without effect, regardless of chain length. Palmitate-induced Ca2+ accumulation was immediately terminated with 2 microM palmitoyl-CoA, a blocker of the GTP-activated Ca2+-translocating mechanism. The anion transport inhibitor 4, 4'-diisothiocyanostilbene-2,2'-disulfonic acid completely prevented both palmitate- and oxalate-mediated GTP-dependent Ca2+ accumulation, with EC50 approximately 30 microM. Ca2+ sequestered in the presence of palmitate and GTP could be immediately and completely released by A23187, whereas the sequestered Ca2+ was remarkably resistant to release induced by inositol 1,4,5-trisphosphate (InsP3). In contrast, oxalate-sequestered Ca2+ within the same pool could be effectively released by either ionophore or InsP3. The results indicate that fatty acids are specifically transported into the lumen of a subset of Ca2+ pools, wherein they mediate substantial sequestration of Ca2+ in a distinct membrane-associated substate that is not readily releasable by opened InsP3-sensitive Ca2+ channels.


Assuntos
Cálcio/metabolismo , Ácidos Graxos/metabolismo , Animais , Sinalização do Cálcio , Linhagem Celular , Cricetinae , Guanosina Trifosfato/antagonistas & inibidores , Guanosina Trifosfato/farmacologia , Transporte de Íons
3.
Biosci Rep ; 16(2): 139-57, 1996 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-8790919

RESUMO

The Ca2+ pump and Ca2+ release functions of intracellular Ca2+ pools have been well characterized. However, the nature and identity of Ca2+ pools as well as the physiological implications of Ca2+ levels within them, have remained elusive. Ca2+ pools appear to be contained within the endoplasmic reticulum (ER); however, ER is a heterogeneous and widely distributed organelle, with numerous other functions than Ca2+ regulation. Studies described here center on trying to determine more about subcellular distribution of Ca2+ pools, the levels of Ca2+ within Ca2+ pools, and how these intraluminal Ca2+ levels may be physiologically related to ER function. Experiments utilizing in situ high resolution subcellular morphological analysis of ER loaded with ratiometric fluorescent Ca2+ dyes, indicate a wide distribution of inositol 1,4,5-trisphosphate (InsP3)-sensitive Ca2+ pools within cells, and large changes in the levels of Ca2+ within pools following Insp3-mediated Ca2+ release. Such changes in Ca2+ may be of great significance to the translation, translocation, and folding of proteins in ER, in particular with respect to the function of the now numerously described luminal Ca(2+)-sensitive chaperonin proteins. Studies have also focussed on the physiological role of pool Ca2+ changes with respect to cell growth. Emptying of pools using Ca2+ pump blockers can result in cells entering a stable quiescent G(o)-like growth state. After treatment with the irreversible pump blocker, thapsigargin, cells remain in this state until they are stimulated with essential fatty acids whereupon new pump protein is synthesized, functional Ca2+ pools return, and cells re-enter the cell cycle. During the Ca2+ pool-depleted growth-arrested state, cells express a Ca2+ influx channel that is distinct from the store-operated Ca2+ influx channels activated after short-term depletion of Ca2+ pools. Overall, these studies indicate that significant changes in intraluminal ER Ca2+ do occur and that such changes appear linked to alteration of essential ER functions as well as to the cell cycle-state and the growth of cells.


Assuntos
Cálcio/fisiologia , Animais , Divisão Celular , Humanos
4.
J Biol Chem ; 269(50): 31607-13, 1994 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-7989331

RESUMO

A sensitive and specific GTP-activated Ca2+ translocation process induces rapid Ca2+ movements within cells and appears to reflect G protein-induced membrane fusion or junctional communication between discrete subpopulations of Ca(2+)-pumping organelles (Ghosh, T. K., Mullaney, J. M., Tarazi, F. I., and Gill, D. L. (1989) Nature 340, 236-239). Since fatty acylation can modify G protein action, modification of GTP-induced Ca2+ translocation by fatty acyl-CoA was investigated to throw light on the mechanism underlying Ca2+ transfer. Using permeabilized DDT1MF-2 smooth muscle cells, 2 microM palmitoyl-CoA completely blocked Ca2+ release activated by 20 microM GTP, while having no effect on inositol 1,4,5-trisphosphate-induced Ca2+ release. The IC50 (50% inhibitory concentration) for palmitoyl-CoA was 0.5 microM. Above 3 microM, palmitoyl-CoA inhibited Ca2+ accumulation. Fatty acyl chain length was important, C-13 to C-16 fatty acyl-CoA esters all fully blocking the action of GTP; the IC50 for myristoyl-CoA was also 0.5 microM. C-18 or larger acyl groups had diminished effectiveness as did C-8 or smaller acyl groups. Acetyl-CoA had no blocking effect. In contrast, 10 microM CoA itself blocked GTP-induced Ca2+ release. CoA required a free sulfhydryl group to block, desulfo-CoA having no effect. Removal of ATP by hexokinase and glucose prevented the action of CoA but not palmitoyl-CoA. The free sulfhydryl and ATP requirements indicated CoA was being acylated by endogenous fatty-acyl-CoA synthetase to be effective. The nonhydrolyzable myristoyl-CoA analog, S-(2-oxopentadecyl)-CoA, blocked the GTP effect identically to myristoyl- and palmitoyl-CoA (IC50 = 0.5 microM); thus, fatty acyl transfer is not required, indicating that blockade is due to a direct allosteric modification of a component of the GTP-activated process by acyl-CoA esters. Palmitoyl-CoA not only inhibited but completely reversed GTP-activated Ca2+ release, resulting in the released Ca2+ being taken back up into pools. In the presence of oxalate, GTP-activated Ca2+ transfer results in a substantial increase in Ca2+ accumulation; palmitoyl-CoA also completely reversed this effect resulting in rapid termination of Ca2+ uptake. This reversal provides strong evidence that GTP-activated Ca2+ translocation does not reflect a membrane fusion event. Instead, it likely represents formation of a reversible junction or pore between organelles which may be a required prefusion event.


Assuntos
Cálcio/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Guanosina Trifosfato/farmacologia , Palmitoil Coenzima A/metabolismo , Acilação , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Coenzima A/química , Cricetinae , Técnicas In Vitro , Membranas Intracelulares/metabolismo , Fusão de Membrana , Compostos de Sulfidrila/química
5.
J Neurochem ; 54(6): 2125-37, 1990 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-2338562

RESUMO

The effects of cell density and retinoic acid-induced differentiation on the class and molecular species composition of mouse neuroblastoma NB2a cell glycosphingolipids were examined under conditions where the period of culture was controlled. The total amount of neutral glycosphingolipids per cell decreased both with differentiation and as the cells became confluent. The relative amount of the neutral glycosphingolipid classes was not affected by differentiation, whereas there were small but significant changes in the relative amount of the neutral glycosphingolipid classes as the cells became confluent. The total amount of the gangliosides was unaffected by either differentiation or cell density, but there were significant changes in the ganglioside class composition as a result of both cell density and differentiation, and the effects were additive. The molecular species of all the major neutral glycosphingolipid and ganglioside classes were essentially identical, and were altered only slightly by either differentiation or cell density.


Assuntos
Glicoesfingolipídeos/metabolismo , Neuroblastoma/metabolismo , Animais , Contagem de Células , Diferenciação Celular , Fenômenos Químicos , Química , Glicoesfingolipídeos/classificação , Camundongos , Neuroblastoma/patologia , Tretinoína/farmacologia , Células Tumorais Cultivadas
6.
J Lipid Res ; 30(11): 1789-97, 1989 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-2614278

RESUMO

Six naturally occurring and three synthetic molecular species of lactosylceramide (LacCer) were used to examine the molecular species specificity of CMP-N-acetylneuraminate:lactosylceramide alpha 2,3-sialyltransferase in a Golgi-rich fraction of rat liver. The enzyme molecular species specificity was determined either in the presence of nonspecific lipid transfer protein or in the presence of detergents. Assays performed in the presence of transfer protein showed that for those lactosylceramide molecular species with either d18:1 or d18:0 long chain base the enzyme activity decreased linearly as the effective carbon number of the fatty acid increased. An increase in the carbon number of the long chain base decreased the activity of the enzyme twice as much as a corresponding increase in the carbon number of the fatty acid. On the other hand, when the enzyme activity was assayed in the presence of detergents, there was no significant difference in activity among the various molecular species of lactosylceramide based upon the carbon number of the fatty acid or on the presence of a double bond in the long chain base. However, the decrease in enzyme activity with an increase in the carbon number of the long chain base persisted. These results demonstrate that sialyltransferase has binding specificity with respect to the long chain base, but not the fatty acid. The apparent molecular species towards the fatty acid is related to the aqueous solubility of the various LacCer molecular species.


Assuntos
Antígenos CD , Glicoesfingolipídeos/metabolismo , Lactosilceramidas , Fígado/enzimologia , Sialiltransferases/metabolismo , Animais , Detergentes/farmacologia , Gangliosídeo G(M3)/biossíntese , Masculino , Ratos , Ratos Endogâmicos , Relação Estrutura-Atividade , Especificidade por Substrato
7.
J Lipid Res ; 30(4): 616-27, 1989 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-2754342

RESUMO

The high performance liquid chromatography separation of the perbenzoyl derivatives of the neutral glycosphingolipids (GlcCer, LacCer, GbOse3Cer, GbOse4Cer, and GgOse3Cer) and the p-bromophenacyl and 2,4-dinitrophenyl hydrazide derivatives of the gangliosides (GM4, GM3, GM2, GM1, GD1a) into individual molecular species on a C18 reversed-phase column is described. Peaks were identified by comparing their relative retention times to the relative retention time of the corresponding glycosphingolipid of known molecular species composition. As little as 5 to 10 pmol of each molecular species of neutral glycosphingolipids and 3 to 5 pmol of the gangliosides can be detected. The effects of changes in the proportion of acetonitrile, methanol, and water in the mobile phase and of column temperature on the molecular species separation are described. A procedure for the tentative identification of glycosphingolipid molecular species based on their relative retention times is presented.


Assuntos
Cromatografia Líquida de Alta Pressão , Glicoesfingolipídeos/isolamento & purificação , Enzimas , Glicoesfingolipídeos/análogos & derivados , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...