Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 13: 952757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246133

RESUMO

Background: Arm use metrics derived from wrist-mounted movement sensors are widely used to quantify the upper limb performance in real-life conditions of individuals with stroke throughout motor recovery. The calculation of real-world use metrics, such as arm use duration and laterality preferences, relies on accurately identifying functional movements. Hence, classifying upper limb activity into functional and non-functional classes is paramount. Acceleration thresholds are conventionally used to distinguish these classes. However, these methods are challenged by the high inter and intra-individual variability of movement patterns. In this study, we developed and validated a machine learning classifier for this task and compared it to methods using conventional and optimal thresholds. Methods: Individuals after stroke were video-recorded in their home environment performing semi-naturalistic daily tasks while wearing wrist-mounted inertial measurement units. Data were labeled frame-by-frame following the Taxonomy of Functional Upper Limb Motion definitions, excluding whole-body movements, and sequenced into 1-s epochs. Actigraph counts were computed, and an optimal threshold for functional movement was determined by receiver operating characteristic curve analyses on group and individual levels. A logistic regression classifier was trained on the same labels using time and frequency domain features. Performance measures were compared between all classification methods. Results: Video data (6.5 h) of 14 individuals with mild-to-severe upper limb impairment were labeled. Optimal activity count thresholds were ≥20.1 for the affected side and ≥38.6 for the unaffected side and showed high predictive power with an area under the curve (95% CI) of 0.88 (0.87,0.89) and 0.86 (0.85, 0.87), respectively. A classification accuracy of around 80% was equivalent to the optimal threshold and machine learning methods and outperformed the conventional threshold by ∼10%. Optimal thresholds and machine learning methods showed superior specificity (75-82%) to conventional thresholds (58-66%) across unilateral and bilateral activities. Conclusion: This work compares the validity of methods classifying stroke survivors' real-life arm activities measured by wrist-worn sensors excluding whole-body movements. The determined optimal thresholds and machine learning classifiers achieved an equivalent accuracy and higher specificity than conventional thresholds. Our open-sourced classifier or optimal thresholds should be used to specify the intensity and duration of arm use.

2.
Front Physiol ; 13: 933987, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225292

RESUMO

Background: Stroke leads to motor impairment which reduces physical activity, negatively affects social participation, and increases the risk of secondary cardiovascular events. Continuous monitoring of physical activity with motion sensors is promising to allow the prescription of tailored treatments in a timely manner. Accurate classification of gait activities and body posture is necessary to extract actionable information for outcome measures from unstructured motion data. We here develop and validate a solution for various sensor configurations specifically for a stroke population. Methods: Video and movement sensor data (locations: wrists, ankles, and chest) were collected from fourteen stroke survivors with motor impairment who performed real-life activities in their home environment. Video data were labeled for five classes of gait and body postures and three classes of transitions that served as ground truth. We trained support vector machine (SVM), logistic regression (LR), and k-nearest neighbor (kNN) models to identify gait bouts only or gait and posture. Model performance was assessed by the nested leave-one-subject-out protocol and compared across five different sensor placement configurations. Results: Our method achieved very good performance when predicting real-life gait versus non-gait (Gait classification) with an accuracy between 85% and 93% across sensor configurations, using SVM and LR modeling. On the much more challenging task of discriminating between the body postures lying, sitting, and standing as well as walking, and stair ascent/descent (Gait and postures classification), our method achieves accuracies between 80% and 86% with at least one ankle and wrist sensor attached unilaterally. The Gait and postures classification performance between SVM and LR was equivalent but superior to kNN. Conclusion: This work presents a comparison of performance when classifying Gait and body postures in post-stroke individuals with different sensor configurations, which provide options for subsequent outcome evaluation. We achieved accurate classification of gait and postures performed in a real-life setting by individuals with a wide range of motor impairments due to stroke. This validated classifier will hopefully prove a useful resource to researchers and clinicians in the increasingly important field of digital health in the form of remote movement monitoring using motion sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...