Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38475583

RESUMO

A plant factory equipped with artificial lights is a comparatively new concept when growing seed potatoes (Solanum tuberosum L.) for minituber production. The shortage of disease-free potato seed tubers is a key challenge to producing quality potatoes. Quality seed tuber production all year round in a controlled environment under an artificial light condition was the main purpose of this study. The present study was conducted in a plant factory to investigate the effects of distinct spectrum compositions of LEDs on potato tuberization when grown in an aeroponic system. The study was equipped with eight LED light combinations: L1 = red: blue: green (70 + 25 + 5), L2 = red: blue: green (70 + 20 + 10), L3 = red: blue: green (70 + 15 + 15), L4 = red: blue: green (70 + 10 + 20), L5 = red: blue: far-red (70 + 25 + 5), L6 = red: blue: far-red (70 + 20 + 10), L7 = red: blue: far-red (70 + 15 + 15), L8 = red: blue: far-red (70 + 10 + 20), and L9 = natural light with 300 µmol m-2 s-1 of irradiance, 16/8 h day/night, 65% relative humidity, while natural light was used as the control treatment. According to the findings, treatment L4 recorded a higher tuber number (31/plant), tuber size (>3 g); (9.26 ± 3.01), and GA3 content, along with better plant growth characteristics. Moreover, treatment L4 recorded a significantly increased trend in the stem diameter (11.08 ± 0.25), leaf number (25.32 ± 1.2), leaf width (19 ± 0.81), root length (49 ± 2.1), and stolon length (49.62 ± 2.05) compared to the control (L9). However, the L9 treatment showed the best performance in plant fresh weight (67.16 ± 4.06 g) and plant dry weight (4.46 ± 0.08 g). In addition, photosynthetic pigments (Chl a) (0.096 ± 0.00 mg g-1, 0.093 ± 0.00 mg g-1) were found to be the highest in the L1 and L2 treatments, respectively. However, Chl b and TCL recorded the best results in treatment L4. Finally, with consideration of the plant growth and tuber yield performance, treatment L4 was found to have the best spectral composition to grow quality seed potato tubers.

2.
Plants (Basel) ; 12(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38068603

RESUMO

Cannabichromene (CBC), a non-psychoactive cannabinoid found in Cannabis sativa, has recently been shown to possess several medicinal properties. However, how CBC produces anti-inflammatory effects and the mechanisms of this remain poorly studied. Therefore, we extracted and purified the CBC from the Cannabis sativa cv. pink pepper (hemp cultivar). The efficacy of CBC in reducing inflammation in RAW 264.7 macrophages and a λ-carrageenan-induced mouse model was then evaluated. CBC had no cytotoxicity up to a concentration of 20 µM and inhibited nitric oxide production by approximately 50% at a concentration of 20 µM. In addition, CBC treatment significantly inhibited causes of inflammation such as inducible nitric oxide synthase (iNOS), interleukin-1ß (IL-1ß), IL-6, and tumor necrosis factor-α (TNF-α) at both the mRNA and protein levels. Moreover, CBC suppressed LPS-stimulated inflammation in RAW 264.7 cells by downregulating the nuclear factor kappa B (NF-kB) and mitogen-activated protein kinase pathways (MAPK). Furthermore, our in vivo experiments confirmed that the λ-carrageenan-induced increase in the levels of the cytokines iNOS, IL-1ß, and IL-6 was abrogated following treatment with CBC. Therefore, CBC has potential anti-inflammatory effects and may be useful for preventing or treating inflammation.

3.
Molecules ; 28(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37764215

RESUMO

Cannabis sativa L. contains more than 80 cannabinoids, among which cannabidiol (CBD) is the main neuroactive component. We aimed to investigate the anti-inflammatory efficacy of CBD in vitro and in vivo isolated from "Pink pepper", a novel hemp cultivar, by repeating the method of selecting and cultivating individuals with the highest CBD content. We investigated the effects of CBD on inflammatory markers elevated by lipopolysaccharide (LPS) treatment in RAW 264.7 mouse macrophage cells through Western blot and RT-PCR. In addition, we confirmed these effects through the ELISA of inflamed paw tissue of a λ-carrageenan-induced mouse edema model that received an oral administration of CBD. CBD inhibited the LPS-induced phosphorylation of NF-κB and MAPK in RAW 264.7 and exhibited anti-inflammatory effects by participating in these pathways. In our in vivo study, we confirmed that CBD also inhibited the inflammatory mediators of proteins extracted from edematous mouse paw tissue. These results show that CBD isolated from "Pink pepper" exhibits potent anti-inflammatory effects. These anti-inflammatory effects of CBD have pharmacological and physiological significance, highlighting the industrial value of this novel cultivar.


Assuntos
Canabidiol , Cannabis , Piper nigrum , Animais , Camundongos , Canabidiol/farmacologia , Lipopolissacarídeos/efeitos adversos , Administração Oral , Alimentos , Modelos Animais de Doenças
4.
Front Plant Sci ; 13: 984410, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340385

RESUMO

Manipulation of growth and development of cannabis (Cannabis sativa L.) has received considerable interest by the scientific community due to its high value in medicinal and recreational use worldwide. This study was conducted to investigate the effects of LED spectral changes on reactive oxygen species (ROS) and cannabinoid accumulation by provoking growth, pigmentation, photosynthesis, and secondary metabolites production of cannabis grown in an indoor environment. After three weeks of vegetative growth under greenhouse condition, plants were further grown for 90 days in a plant factory treated with 4 LED light compositions with a canopy-level photosynthetic photon flux density (PPFD) of 300 µmol m-2 s-1 for 16 h. Photosynthetic pigments and photosynthetic rate were linearly increased up to 60 days and then sharply decreased which was found most prominent in L3: MB 240 (Red 85% + Blue 15%) and L4: PF 240 (Red 70% + Blue 30%) LED light compositions. A high concentration of H2O2 was also observed in L3 and L4 treatments which provoked lipid peroxidation in later growth stage. In addition, higher accumulation of cannabinoid was observed under L4 treatment in most cases. It is also evident that higher ROS created a cellular stress in plant as indicated by higher osmolyte synthesis and enzyme activity which initiate quick maturation along with higher cannabinoids accumulation in cannabis plant. Therefore, it can be concluded that ROS metabolism has a crucial role in morpho-physiological acclimation and cannabinoid accumulation in hemp plants. The findings of this study provide further insight on the use of LED light to maximize the production of cannabinoid.

5.
Antioxidants (Basel) ; 11(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36421488

RESUMO

Mulberry is a rich source of anthocyanins (ACNs) known to possess biological activities. However, these ACNs are unstable in high pH, heat, and aqueous environments with a low bioavailability. In this study, a colloidal dispersion was prepared by hot melt extrusion with proper excipients. In this process, a hydrophilic polymer matrix was used to confirm the stability of the compound in high pH, high temperature, and aqueous media. It was confirmed that the particle size and the polydispersity index value were reduced, thereby improving the solubility. In vitro release studies revealed that the extrudate had a sustained release compared to a non-extruded product. As a result of measuring changes of intestinal microorganisms (Lacticaseibacillus rhamnosus, Pediococcus pentosaceus, Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus), contents of probiotics were found to be increased whereas contents of pathogenic microorganisms were decreased. Thus, hot-melt extrusion could enhance the stability of ACN with prolonged release. The processed formulation exhibited probiotic properties and antimicrobial activities against pathogenic intestinal microflora.

6.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830259

RESUMO

Mulberry fruits are rich sources of anthocyanins that exhibit beneficial biological activity. These anthocyanins become instable in an aqueous media, leading to their low bioavailability. In this study, a colloidal dispersion was produced by processing mulberry samples with hot-melt extrusion. In this process, hydrophilic polymer matrices were used to disperse the compound in an aqueous media. Mulberry samples were processed with hot-melt extrusion and in the presence of an ionization agent and sodium alginate to form mulberry-extrudate solid formulations. The particle size of mulberry-extrudate solid formulations decreased, while the total phenol content, the total anthocyanin content, and solubility increased. Fourier transform infrared spectroscopy (FT-IR) revealed that mulberry-extrudate solid formulations now contained new functional groups, such as -COOH group. We investigated whether mulberry-extrudate solid formulations had a positive impact on the stability of anthocyanins. The non-extrudate mulberry sample and mulberry-extrudate solid formulations were incubated with a simulated gastric fluid system and an intestinal fluid system. The number of released anthocyanins was determined with HPLC. We found that anthocyanins were released rapidly from non-extrudate mulberry extract. Mulberry-extrudate solid formulations contained a large number of available anthocyanins even after being incubated for 180 min in the intestinal fluid system. Thus, hot-melt extrusion enhanced water solubility and stability of anthocyanins with the prolonged release.


Assuntos
Antocianinas/isolamento & purificação , Preparações de Ação Retardada/química , Frutas/química , Extração Líquido-Líquido/métodos , Morus/química , Alginatos/química , Antocianinas/química , Materiais Biomiméticos/química , Cromatografia Líquida de Alta Pressão , Suco Gástrico/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Tamanho da Partícula , Fenóis/química , Fenóis/isolamento & purificação , Solubilidade , Água/química
7.
Biology (Basel) ; 10(8)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34439943

RESUMO

Hemp adaptability through physiological and biochemical changes was studied under 10 LED light spectra and natural light in a controlled aeroponic system. Light treatments were imposed on 25 days aged seedlings for 16 h daily (300 µmol m-2 s-1) for 20 days. Plant accumulated highest Cannabidiol (CBD) in R7:B2:G1 light treatment, with relatively higher photosynthetic rate and lower reactive oxygen species, total phenol content, total flavonoid content, DPPH radical scavenging capacity, and antioxidant enzymatic activities. Tetrahydrocannabinol (THC) also accumulated at a higher level in white, R8:B2, and R7:B2:G1 light with less evidence of stress-modulated substances. These results indicated that CBD and THC have no or little relation with light-mediated abiotic stress in hemp plants. On the contrary, Tetrahydrocannabinolic acid (THCA) was accumulated higher in R6:B2:G1:FR1 and R5:B2:W2:FR1 light treatment along with lower photosynthetic rate and higher reactive oxygen species, total phenol content, total flavonoid content, DPPH radical scavenging capacity, and antioxidant enzymatic activities. However, Cannabidiolic acid (CBDA) was accumulated higher in R6:B2:G1:FR1 light treatment with higher stress-modulated substances and lower physiological traits. CBDA was also accumulated higher in R8:B2 and R7:B2:G1 light treatments with less evidence of stress-modulated substances. Besides, Greenlight influenced CBD and CBDA synthesis where FR and UV-A (along with green) play a positive and negative role in this process. Overall, the results indicated that the treatment R7:B2:G1 enhanced the medicinal cannabinoids most, and the role of THCA as a stress marker is more decisive in the hemp plant than in other cannabinoids under attributed light-mediated stress.

8.
Molecules ; 26(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34299386

RESUMO

This study was carried out to develop a high-performance liquid chromatography method for short-time analysis of the main cannabinoids in the inflorescence of hemp (Cannabis sativa L.). We also performed decarboxylation of the raw material using our advanced analysis technique. In this study, the UV spectrum was considered to analyze each of the four common cannabinoids, solvents, and samples, where the uniform elution of acidic cannabinoids without peak tailing and acids was tested. Optimal results were obtained when readings were taken at a wavelength of 220 nm using water and methanol containing trifluoroacetic acid as mobile phases in a solvent gradient system. The established conditions were further validated by system suitability, linearity, precision, detection limit, and quantitation limit tests. The decarboxylation index (DT50) confirmed that Δ9-THCA decarboxylated faster than CBDA, and both maintained a linear relationship with time and temperature. In addition, the loss of cannabidiol was better prevented during the decarboxylation process in the natural state than in the extracted state.


Assuntos
Canabinoides/análise , Cannabis/química , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/análise , Solventes/química , Espectrometria de Massas em Tandem/métodos
9.
Plants (Basel) ; 10(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203403

RESUMO

The effect of exogenously applied putrescine (Put) on salt stress tolerance was investigated in Panax ginseng. Thirty-day-old ginseng sprouts were grown in salinized nutrient solution (150 mM NaCl) for five days, while the control sprouts were grown in nutrients solution. Putrescine (0.3, 0.6, and 0.9 mM) was sprayed on the plants once at the onset of salinity treatment, whereas control plants were sprayed with water only. Ginseng seedlings tested under salinity exhibited reduced plant growth and biomass production, which was directly interlinked with reduced chlorophyll and chlorophyll fluorescence due to higher reactive oxygen species (hydrogen peroxide; H2O2) and lipid peroxidation (malondialdehyde; MDA) production. Application of Put enhanced accumulation of proline, total soluble carbohydrate, total soluble sugar and total soluble protein. At the same time, activities of antioxidant enzymes like superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase in leaves, stems, and roots of ginseng seedlings were increased. Such modulation of physio-biochemical processes reduced the level of H2O2 and MDA, which indicates a successful adaptation of ginseng seedlings to salinity stress. Moreover, protopanaxadiol (PPD) ginsenosides enhanced by both salinity stress and exogenous Put treatment. On the other hand, protopanaxatriol (PPT) ginsenosides enhanced in roots and reduced in leaves and stems under salinity stress condition. In contrast, they enhanced by exogenous Put application in all parts of the plants for most cases, also evidenced by principal component analysis. Collectively, our findings provide an important prospect for the use of Put in modulating salinity tolerance and ginsenosides content in ginseng sprouts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...