Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38924775

RESUMO

Rationale: Fibrotic hypersensitivity pneumonitis is a debilitating interstitial lung disease driven by incompletely understood immune mechanisms. Objectives: To elucidate immune aberrations in fibrotic hypersensitivity pneumonitis in single-cell resolution. Methods: Single-cell 5' RNA sequencing was conducted on peripheral blood mononuclear cells and bronchoalveolar lavage cells obtained from 45 patients with fibrotic hypersensitivity pneumonitis, 63 idiopathic pulmonary fibrosis, 4 non-fibrotic hypersensitivity pneumonitis, and 36 healthy controls in the United States and Mexico. Analyses included differential gene expression (Seurat), transcription factor activity imputation (DoRothEA-VIPER), and trajectory analyses (Monocle3/Velocyto-scVelo-CellRank). Measurements and Main Results: Overall, 501,534 peripheral blood mononuclear cells from 110 patients and controls and 88,336 bronchoalveolar lavage cells from 19 patients were profiled. Compared to controls, fibrotic hypersensitivity pneumonitis has elevated classical monocytes (adjusted-p=2.5e-3) and are enriched in CCL3hi/CCL4hi and S100Ahi classical monocytes (adjusted-p<2.2e-16). Trajectory analyses demonstrate that S100Ahi classical monocytes differentiate into SPP1hi lung macrophages associated with fibrosis. Compared to both controls and idiopathic pulmonary fibrosis, fibrotic hypersensitivity pneumonitis patient cells are significantly enriched in GZMhi cytotoxic T cells. These cells exhibit transcription factor activities indicative of TGFß and TNFα/NFκB pathways. These results are publicly available at https://ildimmunecellatlas.org. Conclusions: Single-cell transcriptomics of fibrotic hypersensitivity pneumonitis patients uncovered novel immune perturbations, including previously undescribed increases in GZMhi cytotoxic CD4+ and CD8+ T cells - reflecting this disease's unique inflammatory T-cell driven nature - as well as increased S100Ahi and CCL3hi/CCL4hi classical monocytes also observed in idiopathic pulmonary fibrosis. Both cell populations may guide the development of new biomarkers and therapeutic interventions.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38717443

RESUMO

RATIONALE: Changes in peripheral blood cell populations have been observed but not detailed at single-cell resolution in idiopathic pulmonary fibrosis (IPF). OBJECTIVES: To provide an atlas of the changes in the peripheral immune system in stable and progressive IPF. METHODS: Peripheral blood mononuclear cells (PBMCs) from IPF patients and controls were profiled using 10x Chromium 5' single-cell RNA sequencing (scRNA-seq). Flow cytometry was used for validation. Protein concentrations of Regulatory T-cells (Tregs) and Monocytes chemoattractants were measured in plasma and lung homogenates from patients and controls. MEASUREMENTS AND MAIN RESULTS: Thirty-eight PBMC samples from 25 patients with IPF and 13 matched controls yielded 149,564 cells that segregated into 23 subpopulations. Classical monocytes were increased in progressive and stable IPF compared to controls (32.1%, 25.2%, 17.9%, respectively, p<0.05). Total lymphocytes were decreased in IPF vs controls, and in progressive vs stable IPF (52.6% vs 62.6%, p=0.035). Tregs were increased in progressive vs stable IPF (1.8% vs 1.1% of all PBMC, p=0.007), although not different than controls, and may be associated with decreased survival (P=0.009 in Kaplan-Meier analysis; P=0.069 after adjusting for age, sex, and baseline FVC). Flow cytometry analysis confirmed this finding in an independent cohort of IPF patients. Fraction of Tregs out of all T cells was also increased in two cohorts of lung scRNA-seq. CCL22 and CCL18, ligands for CCR4 and CCR8 Treg chemotaxis receptors, were increased in IPF. CONCLUSIONS: The single-cell atlas of the peripheral immune system in IPF, reveals an outcome-predictive increase in classical monocytes and Tregs, as well as evidence for a lung-blood immune recruitment axis involving CCL7 (for classical monocytes) and CCL18/CCL22 (for Tregs).

3.
Proc Natl Acad Sci U S A ; 121(18): e2319566121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648490

RESUMO

Respiratory virus infections in humans cause a broad-spectrum of diseases that result in substantial morbidity and mortality annually worldwide. To reduce the global burden of respiratory viral diseases, preventative and therapeutic interventions that are accessible and effective are urgently needed, especially in countries that are disproportionately affected. Repurposing generic medicine has the potential to bring new treatments for infectious diseases to patients efficiently and equitably. In this study, we found that intranasal delivery of neomycin, a generic aminoglycoside antibiotic, induces the expression of interferon-stimulated genes (ISGs) in the nasal mucosa that is independent of the commensal microbiota. Prophylactic or therapeutic administration of neomycin provided significant protection against upper respiratory infection and lethal disease in a mouse model of COVID-19. Furthermore, neomycin treatment protected Mx1 congenic mice from upper and lower respiratory infections with a highly virulent strain of influenza A virus. In Syrian hamsters, neomycin treatment potently mitigated contact transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In healthy humans, intranasal application of neomycin-containing Neosporin ointment was well tolerated and effective at inducing ISG expression in the nose in a subset of participants. These findings suggest that neomycin has the potential to be harnessed as a host-directed antiviral strategy for the prevention and treatment of respiratory viral infections.


Assuntos
Administração Intranasal , Antivirais , Neomicina , SARS-CoV-2 , Animais , Neomicina/farmacologia , Neomicina/administração & dosagem , Camundongos , Humanos , Antivirais/farmacologia , Antivirais/administração & dosagem , SARS-CoV-2/imunologia , SARS-CoV-2/efeitos dos fármacos , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/virologia , Infecções Respiratórias/prevenção & controle , Mucosa Nasal/imunologia , Mucosa Nasal/virologia , Mucosa Nasal/efeitos dos fármacos , Modelos Animais de Doenças , Tratamento Farmacológico da COVID-19 , Mesocricetus , Feminino , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/imunologia
4.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38496452

RESUMO

Host response aimed at eliminating the infecting pathogen, as well as the pathogen itself, can cause tissue injury. Tissue injury leads to the release of a myriad of cellular components including mitochondrial DNA, which the host senses through pattern recognition receptors. How the sensing of tissue injury by the host shapes the anti-pathogen response remains poorly understood. In this study, we utilized mice that are deficient in toll-like receptor-9 (TLR9), which binds to unmethylated CpG DNA sequences such as those present in bacterial and mitochondrial DNA. To avoid direct pathogen sensing by TLR9, we utilized the influenza virus, which lacks ligands for TLR9, to determine how damage sensing by TLR9 contributes to anti-influenza immunity. Our data show that TLR9-mediated sensing of tissue damage promotes an inflammatory response during early infection, driven by the myeloid cells and associated cytokine responses. Along with the diminished inflammatory response, the absence of damage sensing through TLR9 led to impaired viral clearance manifested as a higher and prolonged influenza burden in the lung. The absence of TLR9 led to extensive infection of myeloid cells including monocytes and macrophages rendering them highly inflammatory, despite having a low initial inflammatory response. The persistent inflammation driven by infected myeloid cells led to persistent lung injury and impaired recovery in influenza-infected TLR9-/- mice. Further, we show elevated circulating TLR9 ligands in the plasma samples of patients with influenza, demonstrating its clinical relevance. Overall, over data show an essential role of damage sensing through TLR9 in promoting anti-influenza immunity.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38343306

RESUMO

BACKGROUND: Dysregulation of the airway microbiota is thought to contribute to airway inflammation in both chronic rhinosinusitis (CRS) and asthma. However, the relationship between the upper and lower airway microbiome remains unclear. METHODS: Sinus and lung brushes were collected from 29 CRS participants undergoing sinus surgery. DNA was extracted and submitted for 16s rRNA microbiome sequencing. Alpha and beta diversity metrics, taxonomic composition, and differences between individual taxa were compared for paired sinus and bronchial samples. RESULTS: Twenty-three out of 29 participants had sufficient samples for analysis. The mean (standard deviation) age was 51.59 (14.57) years, and 10 (44%) patients were female. Twelve (52%) patients had comorbid asthma. Sinus brushes had significantly higher alpha diversity indexes (Shannon and Faith) compared to bronchial brushes (p < 0.001). Beta diversity metrics were significantly different between the sinus and bronchial samples. Principal coordinate analysis showed no clustering of paired nasal and bronchial samples. Sinus brushes had significantly more Lawsonella, Corynebacterium, and Staphylococcus compared to bronchia brushes, while the latter were enriched in Tropheryma and Sphingomonas, among others (false discovery rate [FDR]-adjusted p < 0.01). Finally, CRS patients with comorbid asthma had significantly higher Pseudomonas and Peptoniphilus in sinus brushes and lower Prevotella in bronchial brushes when compared to non-asthmatics (FDR-adjusted p < 0.01). CONCLUSION: The sinus and bronchial bacterial microbiomes differ in important ways. Our study suggests that migration of bacteria from the sinus into the lower airways is unlikely in patients with CRS.

6.
Chest ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977267

RESUMO

BACKGROUND: Patients with sarcoidosis who develop severe clinical phenotypes of pulmonary fibrosis or multiorgan disease experience debilitating symptoms, with fatigue being a common chief complaint. Studies that have investigated this patient-related outcome measure (PROM) have used the Fatigue Assessment Scale (FAS), a self-reported questionnaire that reflects mental and physical domains. Despite extensive work, its cause is unknown and treatment options remain limited. Previously, we showed that the plasma of patients with sarcoidosis with extrapulmonary disease endorsing fatigue was enriched for mitochondrial DNA (mtDNA), a ligand for the innate immune receptor toll-like receptor 9 (TLR9). Through our cross-disciplinary platform, we investigated a relationship between sarcoidosis-induced fatigue and circulating mtDNA. RESEARCH QUESTION: Is there a psychobiologic mechanism that connects sarcoidosis-induced fatigue and mtDNA-mediated TLR9 activation? STUDY DESIGN AND METHODS: Using a local cohort of patients at Yale (discovery cohort) and the National Institutes of Health-sponsored Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis study (validation cohort), we scored the FAS and quantified in the plasma, mtDNA concentrations, TLR9 activation, and cytokine levels. RESULTS: Although FAS scores were independent of corticosteroid use and Scadding stage, we observed a robust association between FAS scores, which included mental and physical domains, and multiorgan sarcoidosis. Subsequently, we identified a significant correlation between plasma mtDNA concentrations and all domains of fatigue. Additionally, we found that TLR9 activation is associated with all aspects of the FAS and partially mediates this PROM through mtDNA. Last, we found that TLR9-associated soluble mediators in the plasma are independent of all facets of fatigue. INTERPRETATION: Through our cross-disciplinary translational platform, we identified a previously unrecognized psychobiologic connection between sarcoidosis-induced fatigue and circulating mtDNA concentrations. Mechanistic work that investigates the contribution of mtDNA-mediated innate immune activation in this PROM and clinical studies with prospective cohorts has the potential to catalyze novel therapeutic strategies for this patient population and those with similar conditions.

7.
bioRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37786685

RESUMO

Rationale and Objectives: The extent and commonality of peripheral blood immune aberrations in fibrotic interstitial lung diseases are not well characterized. In this study, we aimed to identify common and distinct immune aberrations in patients with idiopathic pulmonary fibrosis (IPF) and fibrotic hypersensitivity pneumonitis (FHP) using cutting-edge single-cell profiling technologies. Methods: Single-cell RNA sequencing was performed on patients and healthy controls' peripheral blood and bronchoalveolar lavage samples using 10X Genomics 5' gene expression and V(D)J profiling. Cell type composition, transcriptional profiles, cellular trajectories and signaling, and T and B cell receptor repertoires were studied. The standard Seurat R pipeline was followed for cell type composition and differential gene expression analyses. Transcription factor activity was imputed using the DoRothEA-VIPER algorithm. Pseudotime analyses were conducted using Monocle3, while RNA velocity analyses were performed with Velocyto, scVelo, and CellRank. Cell-cell connectomics were assessed using the Connectome R package. V(D)J analyses were conducted using CellRanger and Immcantation frameworks. Across all analyses, disease group differences were assessed using the Wilcoxon rank-sum test. Measurements and Main Results: 327,990 cells from 83 samples were profiled. Overall, changes in monocytes were common to IPF and FHP, whereas lymphocytes exhibited disease-specific aberrations. Both diseases displayed enrichment of CCL3 hi /CCL4 hi CD14+ monocytes (p<2.2e-16) and S100A hi CD14+ monocytes (p<2.2e-16) versus controls. Trajectory and RNA velocity analysis suggested that pro-fibrotic macrophages observed in BAL originated from peripheral blood monocytes. Lymphocytes exhibited disease-specific aberrations, with CD8+ GZMK hi T cells and activated B cells primarily enriched in FHP patients. V(D)J analyses revealed unique T and B cell receptor complementarity-determining region 3 (CDR3) amino acid compositions (p<0.05) in FHP and significant IgA enrichment in IPF (p<5.2e-7). Conclusions: We identified common and disease-specific immune mechanisms in IPF and FHP; S100A hi monocytes and SPP1 hi macrophages are common to IPF and FHP, whereas GMZK hi T lymphocytes and T and B cell receptor repertoires were unique in FHP. Our findings open novel strategies for the diagnosis and treatment of IPF and FHP.

8.
Front Cell Dev Biol ; 11: 1254904, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849737

RESUMO

SSc-ILD (scleroderma associated interstitial lung disease) is a complex rheumatic disease characterized in part by immune dysregulation leading to the progressive fibrotic replacement of normal lung architecture. Because improved treatment options are sorely needed, additional study of the fibroproliferative mechanisms mediating this disease has the potential to accelerate development of novel therapies. The contribution of innate immunity is an emerging area of investigation in SSc-ILD as recent work has demonstrated the mechanistic and clinical significance of the NLRP3 inflammasome and its associated cytokines of TNFα (tumor necrosis factor alpha), IL-1ß (interleukin-1 beta), and IL-18 in this disease. In this review, we will highlight novel pathophysiologic insights afforded by these studies and the potential of leveraging this complex biology for clinical benefit.

9.
J Exp Med ; 220(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37773045

RESUMO

Central B cell tolerance is believed to be regulated by B cell receptor signaling induced by the recognition of self-antigens in immature B cells. Using humanized mice with defective MyD88, TLR7, or TLR9 expression, we demonstrate that TLR9/MYD88 are required for central B cell tolerance and the removal of developing autoreactive clones. We also show that CXCL4, a chemokine involved in systemic sclerosis (SSc), abrogates TLR9 function in B cells by sequestering TLR9 ligands away from the endosomal compartments where this receptor resides. The in vivo production of CXCL4 thereby impedes both TLR9 responses in B cells and the establishment of central B cell tolerance. We conclude that TLR9 plays an essential early tolerogenic function required for the establishment of central B cell tolerance and that correcting defective TLR9 function in B cells from SSc patients may represent a novel therapeutic strategy to restore B cell tolerance.


Assuntos
Fator Plaquetário 4 , Escleroderma Sistêmico , Receptor Toll-Like 9 , Animais , Humanos , Camundongos , Linfócitos B , Ligantes , Fator 88 de Diferenciação Mieloide/metabolismo , Fator Plaquetário 4/metabolismo , Escleroderma Sistêmico/metabolismo , Receptor 7 Toll-Like , Receptor Toll-Like 9/metabolismo
11.
medRxiv ; 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37163015

RESUMO

Rationale: Changes in peripheral blood cell populations have been observed but not detailed at single-cell resolution in idiopathic pulmonary fibrosis (IPF). Objectives: To provide an atlas of the changes in the peripheral immune system in stable and progressive IPF. Methods: Peripheral blood mononuclear cells (PBMCs) from IPF patients and controls were profiled using 10x Chromium 5' single-cell RNA sequencing (scRNA-seq). Flow cytometry was used for validation. Protein concentrations of Regulatory T-cells (Tregs) and Monocytes chemoattractants were measured in plasma and lung homogenates from patients and controls. Measurements and Main Results: Thirty-eight PBMC samples from 25 patients with IPF and 13 matched controls yielded 149,564 cells that segregated into 23 subpopulations, corresponding to all expected peripheral blood cell populations. Classical monocytes were increased in progressive and stable IPF compared to controls (32.1%, 25.2%, 17.9%, respectively, p<0.05). Total lymphocytes were decreased in IPF vs controls, and in progressive vs stable IPF (52.6% vs 62.6%, p=0.035). Tregs were increased in progressive IPF (1.8% vs 1.1%, p=0.007), and were associated with decreased survival (P=0.009 in Kaplan-Meier analysis). Flow cytometry analysis confirmed this finding in an independent cohort of IPF patients. Tregs were also increased in two cohorts of lung scRNA-seq. CCL22 and CCL18, ligands for CCR4 and CCR8 Treg chemotaxis receptors, were increased in IPF. Conclusions: The single-cell atlas of the peripheral immune system in IPF, reveals an outcome-predictive increase in classical monocytes and Tregs, as well as evidence for a lung-blood immune recruitment axis involving CCL7 (for classical monocytes) and CCL18/CCL22 (for Tregs).

13.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L639-L651, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36648147

RESUMO

Idiopathic pulmonary fibrosis is increasingly associated with nerve-driven processes and endogenous innate immune ligands such as mitochondrial DNA (mtDNA). Interestingly, a connection between these entities has not been explored. Here, we report that noradrenaline (NA) derived from the lung's adrenergic nerve supply drives α-smooth muscle actin (αSMA)-expressing fibroblast accumulation via mechanisms involving α1 adrenoreceptors and mtDNA. Using the bleomycin model, we compared ablation of the lung's adrenergic nerve supply with surgical adrenal resection and found that NA derived from local but not adrenal sources contributes to experimentally induced lung fibrosis and the emergence of an αSMA+ve fibroblast population expressing adrenoreceptor α-1D (ADRA1D). Therapeutic delivery of the α1 adrenoreceptor antagonist terazosin reversed these changes and suppressed extracellular mtDNA accumulation. Cultured normal human lung fibroblasts displayed α1 adrenoreceptors and in response to costimulation with TGFß1 and NA adopted ACTA2 expression and extracellular mtDNA release. These findings were opposed by terazosin. Evaluation of a previously studied IPF cohort revealed that patients prescribed α1 adrenoreceptor antagonists for nonpulmonary indications demonstrated improved survival and reduced concentrations of plasma mtDNA. Our observations link nerve-derived NA, α1 adrenoreceptors, extracellular mtDNA, and lung fibrogenesis in mouse models, cultured cells, and humans with IPF. Further study of this neuroinnate connection may yield new avenues for investigation in the clinical and basic science realms.


Assuntos
DNA Mitocondrial , Fibrose Pulmonar Idiopática , Camundongos , Animais , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Transdução de Sinais , Fibroblastos/metabolismo , Bleomicina/farmacologia , Adrenérgicos/metabolismo , Adrenérgicos/farmacologia
14.
JCI Insight ; 8(4)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36626225

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal disease. Recent findings have shown a marked metabolic reprogramming associated with changes in mitochondrial homeostasis and autophagy during pulmonary fibrosis. The microRNA-33 (miR-33) family of microRNAs (miRNAs) encoded within the introns of sterol regulatory element binding protein (SREBP) genes are master regulators of sterol and fatty acid (FA) metabolism. miR-33 controls macrophage immunometabolic response and enhances mitochondrial biogenesis, FA oxidation, and cholesterol efflux. Here, we show that miR-33 levels are increased in bronchoalveolar lavage (BAL) cells isolated from patients with IPF compared with healthy controls. We demonstrate that specific genetic ablation of miR-33 in macrophages protects against bleomycin-induced pulmonary fibrosis. The absence of miR-33 in macrophages improves mitochondrial homeostasis and increases autophagy while decreasing inflammatory response after bleomycin injury. Notably, pharmacological inhibition of miR-33 in macrophages via administration of anti-miR-33 peptide nucleic acids (PNA-33) attenuates fibrosis in different in vivo and ex vivo mice and human models of pulmonary fibrosis. These studies elucidate a major role of miR-33 in macrophages in the regulation of pulmonary fibrosis and uncover a potentially novel therapeutic approach to treat this disease.


Assuntos
Autofagia , Fibrose Pulmonar Idiopática , Macrófagos , MicroRNAs , Animais , Humanos , Camundongos , Autofagia/genética , Bleomicina/efeitos adversos , Homeostase , Fibrose Pulmonar Idiopática/metabolismo , Macrófagos/metabolismo , MicroRNAs/genética , Mitocôndrias/metabolismo
15.
Curr Treatm Opt Rheumatol ; 9(4): 204-220, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38230363

RESUMO

Purpose of the review: Systemic sclerosis (SSc) is a condition of dermal and visceral scar formation characterized by immune dysregulation and inflammatory fibrosis. Approximately 90% of SSc patients develop interstitial lung disease (ILD), and it is the leading cause of morbidity and mortality. Further understanding of immune-mediated fibroproliferative mechanisms has the potential to catalyze novel treatment approaches in this difficult to treat disease. Recent findings: Recent advances have demonstrated the critical role of aberrant innate immune activation mediated by mitochondrial DNA (mtDNA) through interactions with toll-like receptor 9 (TLR9) and cytosolic cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS). Summary: In this review, we will discuss how the nature of the mtDNA, whether oxidized or mutated, and its mechanism of release, either intracellularly or extracellularly, can amplify fibrogenesis by activating TLR9 and cGAS, and the novel insights gained by interrogating these signaling pathways. Because the scope of this review is intended to generate hypotheses for future research, we conclude our discussion with several important unanswered questions.

16.
Respir Med ; 200: 106923, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35932543

RESUMO

INTRODUCTION: Sarcoidosis is a granulomatous disorder thought to be caused by exposures in genetically susceptible individuals. This study investigated whether specific exposures were associated with different sarcoidosis phenotypes. METHODS: Extensive demographic, occupational and environmental exposure data was analyzed from subjects enrolled in the NHLBI Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) study. RESULTS: In patients with sarcoidosis, radiation exposure was significantly associated with an increased risk of cardiac sarcoidosis versus non-cardiac sarcoidosis. No exposures were significantly associated with pulmonary only disease versus extrapulmonary disease with or without pulmonary involvement, Scadding Stage II/III/IV versus Scadding Stage 0/I, acute or remitting disease versus non-acute or non-remitting disease, nor chronic versus non-chronic disease. Although not reaching statistically significance after adjustment for multiple comparisons, there were a number of exposures associated with specific disease phenotypes, including exposures where relationships to sarcoidosis have previously been described such as rural exposures and pesticide exposures. CONCLUSIONS: Radiation exposure may be a risk factor for cardiac sarcoidosis. Other exposures may also be associated with specific phenotypes and should be further explored. The study was limited by small groups of exposed subjects for individual exposures and multiple comparisons. The development of novel and innovative exposure assessment tools is needed.


Assuntos
Pneumopatias , Exposição Ocupacional , Sarcoidose , Deficiência de alfa 1-Antitripsina , Exposição Ambiental/efeitos adversos , Genômica , Humanos , Pneumopatias/complicações , Exposição Ocupacional/efeitos adversos , Sarcoidose/etiologia , Sarcoidose/genética , Deficiência de alfa 1-Antitripsina/complicações , Deficiência de alfa 1-Antitripsina/epidemiologia , Deficiência de alfa 1-Antitripsina/genética
17.
Nat Commun ; 13(1): 3140, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668129

RESUMO

Sarcoidosis is an idiopathic inflammatory disorder that is commonly treated with glucocorticoids. An imprecise understanding of the immunologic changes underlying sarcoidosis has limited therapeutic progress. Here in this open-label trial (NCT03910543), 10 patients with cutaneous sarcoidosis are treated with tofacitinib, a Janus kinase inhibitor. The primary outcome is the change in the cutaneous sarcoidosis activity and morphology instrument (CSAMI) activity score after 6 months of treatment. Secondary outcomes included change in internal organ involvement, molecular parameters, and safety. All patients experience improvement in their skin with 6 patients showing a complete response. Improvement in internal organ involvement is also observed. CD4+ T cell-derived IFN-γ is identified as a central cytokine mediator of macrophage activation in sarcoidosis. Additional type 1 cytokines produced by distinct cell types, including IL-6, IL-12, IL-15 and GM-CSF, also associate with pathogenesis. Suppression of the activity of these cytokines, especially IFN-γ, correlates with clinical improvement. Our results thus show that tofacitinib treatment is associated with improved sarcoidosis symptoms, and predominantly acts by inhibiting type 1 immunity.


Assuntos
Pirimidinas , Sarcoidose , Citocinas/metabolismo , Humanos , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Sarcoidose/tratamento farmacológico , Sarcoidose/patologia
18.
Am J Physiol Lung Cell Mol Physiol ; 322(4): L518-L525, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35196896

RESUMO

Sarcoidosis is a chronic granulomatous disease of unknown etiology that primarily affects the lungs. The development of stage IV or fibrotic lung disease accounts for a significant proportion of the morbidity and mortality attributable to sarcoidosis. Further investigation into the active mechanisms of disease pathogenesis and fibrogenesis might illuminate fundamental mediators of injury and repair while providing new opportunities for clinical intervention. However, progress in sarcoidosis research has been hampered by the heterogeneity of clinical phenotypes and the lack of a consensus modeling system. Recently, reverse translational research, wherein observations made at the patient level catalyze hypothesis-driven research at the laboratory bench, has generated new discoveries regarding the immunopathogenic mechanisms of pulmonary granuloma formation, fibrogenesis, and disease model development. The purpose of this review is to highlight the promise and possibility of these novel investigative efforts.


Assuntos
Fibrose Pulmonar , Sarcoidose , Granuloma/patologia , Humanos , Pulmão/patologia , Fibrose Pulmonar/patologia , Sarcoidose/patologia , Pesquisa Translacional Biomédica
19.
Chest ; 161(2): e71-e73, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35131075

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease characterized by progressive scar tissue formation. An acute exacerbation of IPF (AE-IPF) is a clinically significant respiratory decompensation that accounts for a significant proportion of IPF-related morbidity and mortality. AE-IPF can be idiopathic or associated with pulmonary embolism, infection, aspiration, surgery, and drug toxicity. In this novel case report, we describe a potential association between AE-IPF and BNT162b2 mRNA COVID-19 vaccination that was successfully treated with a short course of glucocorticoids. While our aim is to raise awareness for this yet-to-be-described adverse event, immunization against vaccine-preventable disease remains widely recommended in vulnerable patients with chronic lung disease such as IPF.


Assuntos
Vacina BNT162 , COVID-19/prevenção & controle , Fibrose Pulmonar Idiopática , Pulmão/diagnóstico por imagem , Metilprednisolona/administração & dosagem , Insuficiência Respiratória , Idoso , Vacina BNT162/administração & dosagem , Vacina BNT162/efeitos adversos , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/efeitos adversos , Progressão da Doença , Redução da Medicação/métodos , Glucocorticoides/administração & dosagem , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/fisiopatologia , Fibrose Pulmonar Idiopática/terapia , Masculino , Insuficiência Respiratória/diagnóstico , Insuficiência Respiratória/tratamento farmacológico , Insuficiência Respiratória/etiologia , Medição de Risco/métodos , SARS-CoV-2 , Tomografia Computadorizada por Raios X/métodos , Resultado do Tratamento
20.
Arthritis Rheumatol ; 74(2): 307-317, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34279059

RESUMO

OBJECTIVE: Early selection steps preventing autoreactive naive B cell production are often impaired in patients with autoimmune diseases, but central and peripheral B cell tolerance checkpoints have not been assessed in patients with systemic sclerosis (SSc). This study was undertaken to characterize early B cell tolerance checkpoints in patients with SSc. METHODS: Using an in vitro polymerase chain reaction-based approach that allows the expression of recombinant antibodies cloned from single B cells, we tested the reactivity of antibodies expressed by 212 CD19+CD21low CD10+IgMhigh CD27- new emigrant/transitional B cells and 190 CD19+CD21+CD10-IgM+CD27- mature naive B cells from 10 patients with SSc. RESULTS: Compared to serum from healthy donors, serum from patients with SSc displayed elevated proportions of polyreactive and antinuclear-reactive new emigrant/transitional B cells that recognize topoisomerase I, suggesting that defective central B cell tolerance contributes to the production of serum autoantibodies characteristic of the disease. Frequencies of autoreactive mature naive B cells were also significantly increased in SSc patients compared to healthy donors, thus indicating that a peripheral B cell tolerance checkpoint may be impaired in SSc. CONCLUSION: Defective counterselection of developing autoreactive naive B cells in SSc leads to the production of self antigen-specific B cells that may secrete autoantibodies and allow the formation of immune complexes, which promote fibrosis in SSc.


Assuntos
Autoantígenos/imunologia , Linfócitos B/imunologia , Tolerância Imunológica , Escleroderma Sistêmico/imunologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...