Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Theor Biol ; 575: 111634, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37839584

RESUMO

Polarization is the process by which a macrophage cell commits to a phenotype based on external signal stimulation. To know how this process is affected by random fluctuations and events within a cell is of utmost importance to better understand the underlying dynamics and predict possible phenotype transitions. For this purpose, we develop a stochastic modeling approach for the macrophage polarization process. We classify phenotype states using the Robust Perron Cluster Analysis and quantify transition pathways and probabilities by applying Transition Path Theory. Depending on the model parameters, we identify four bistable and one tristable phenotype configuration. We find that bistable transitions are fast but their states less robust. In contrast, phenotype transitions in the tristable situation have a comparatively long time duration, which reflects the robustness of the states. The results indicate parallels in the overall transition behavior of macrophage cells with other heterogeneous and plastic cell types, such as cancer cells. Our approach allows for a probabilistic interpretation of macrophage phenotype transitions and biological inference on phenotype robustness. In general, the methodology can easily be adapted to other systems where random state switches are known to occur.


Assuntos
Redes Reguladoras de Genes , Probabilidade , Fenótipo , Processos Estocásticos
2.
Front Comput Neurosci ; 16: 903883, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051629

RESUMO

Neural firing in many inhibitory networks displays synchronous assembly or clustered firing, in which subsets of neurons fire synchronously, and these subsets may vary with different inputs to, or states of, the network. Most prior analytical and computational modeling of such networks has focused on 1D networks or 2D networks with symmetry (often circular symmetry). Here, we consider a 2D discrete network model on a general torus, where neurons are coupled to two or more nearest neighbors in three directions (horizontal, vertical, and diagonal), and allow different coupling strengths in all directions. Using phase model analysis, we establish conditions for the stability of different patterns of clustered firing behavior in the network. We then apply our results to study how variation of network connectivity and the presence of heterogeneous coupling strengths influence which patterns are stable. We confirm and supplement our results with numerical simulations of biophysical inhibitory neural network models. Our work shows that 2D networks may exhibit clustered firing behavior that cannot be predicted as a simple generalization of a 1D network, and that heterogeneity of coupling can be an important factor in determining which patterns are stable.

3.
Math Biosci ; 336: 108591, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33775666

RESUMO

Neurons in the inhibitory network of the striatum display cell assembly firing patterns which recent results suggest may consist of spatially compact neural clusters. Previous computational modeling of striatal neural networks has indicated that non-monotonic, distance-dependent coupling may promote spatially localized cluster firing. Here, we identify conditions for the existence and stability of cluster firing solutions in which clusters consist of spatially adjacent neurons in inhibitory neural networks. We consider simple non-monotonic, distance-dependent connectivity schemes in weakly coupled 1-D networks where cells make stronger connections with their kth nearest neighbors on each side and weaker connections with closer neighbors. Using the phase model reduction of the network system, we prove the existence of cluster solutions where neurons that are spatially close together are also synchronized in the same cluster, and find stability conditions for these solutions. Our analysis predicts the long-term behavior for networks of neurons, and we confirm our results by numerical simulations of biophysical neuron network models. Our results demonstrate that an inhibitory network with non-monotonic, distance-dependent connectivity can exhibit cluster solutions where adjacent cells fire together.


Assuntos
Modelos Neurológicos , Rede Nervosa , Potenciais de Ação , Simulação por Computador , Humanos , Rede Nervosa/fisiologia , Neurônios/fisiologia
4.
J Theor Biol ; 509: 110511, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33045246

RESUMO

In this paper, we present and analyze a mathematical model for polarization of a single macrophage which, despite its simplicity, exhibits complex dynamics in terms of multistability. In particular, we demonstrate that an asymmetry in the regulatory mechanisms and parameter values is important for observing multiple phenotypes. Bifurcation and sensitivity analyses show that external signaling cues are necessary for macrophage commitment and emergence to a phenotype, but that the intrinsic macrophage pathways are equally important. Based on our numerical results, we formulate hypotheses that could be further investigated by laboratory experiments to deepen our understanding of macrophage polarization.


Assuntos
Ativação de Macrófagos , Macrófagos , Modelos Teóricos , Fenótipo , Transdução de Sinais
5.
Math Biosci Eng ; 17(6): 7931-7957, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33378927

RESUMO

We study a model for a network of synaptically coupled, excitable neurons to identify the role of coupling delays in generating different network behaviors. The network consists of two distinct populations, each of which contains one excitatory-inhibitory neuron pair. The two pairs are coupled via delayed synaptic coupling between the excitatory neurons, while each inhibitory neuron is connected only to the corresponding excitatory neuron in the same population. We show that multiple equilibria can exist depending on the strength of the excitatory coupling between the populations. We conduct linear stability analysis of the equilibria and derive necessary conditions for delay-induced Hopf bifurcation. We show that these can induce two qualitatively different phase-locked behaviors, with the type of behavior determined by the sizes of the coupling delays. Numerical bifurcation analysis and simulations supplement and confirm our analytical results. Our work shows that the resting equilibrium point is unaffected by the coupling, thus the network exhibits bistability between a rest state and an oscillatory state. This may help understand how rhythms spontaneously arise in neuronal networks.


Assuntos
Redes Neurais de Computação , Neurônios , Modelos Neurológicos
6.
Philos Trans A Math Phys Eng Sci ; 377(2153): 20180129, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31329073

RESUMO

We study synaptically coupled neuronal networks to identify the role of coupling delays in network synchronized behaviour. We consider a network of excitable, relaxation oscillator neurons where two distinct populations, one excitatory and one inhibitory, are coupled with time-delayed synapses. The excitatory population is uncoupled, while the inhibitory population is tightly coupled without time delay. A geometric singular perturbation analysis yields existence and stability conditions for periodic solutions where the excitatory cells are synchronized and different phase relationships between the excitatory and inhibitory populations can occur, along with formulae for the periods of such solutions. In particular, we show that if there are no delays in the coupling, oscillations where the excitatory population is synchronized cannot occur. Numerical simulations are conducted to supplement and validate the analytical results. The analysis helps to explain how coupling delays in either excitatory or inhibitory synapses contribute to producing synchronized rhythms. This article is part of the theme issue 'Nonlinear dynamics of delay systems'.

7.
J Math Biol ; 68(4): 1023-49, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23529284

RESUMO

The glomerular filtration rate in the kidney is controlled, in part, by the tubuloglomerular feedback (TGF) system, which is a negative feedback loop that mediates oscillations in tubular fluid flow and in fluid NaCl concentration of the loop of Henle. In this study, we developed a mathematical model of the TGF system that represents NaCl transport along a short loop of Henle with compliant walls. The proximal tubule and the outer-stripe segment of the descending limb are assumed to be highly water permeable; the thick ascending limb (TAL) is assumed to be water impermeable and have active NaCl transport. A bifurcation analysis of the TGF model equations was performed by computing parameter boundaries, as functions of TGF gain and delay, that separate differing model behaviors. The analysis revealed a complex parameter region that allows a variety of qualitatively different model equations: a regime having one stable, time-independent steady-state solution and regimes having stable oscillatory solutions of different frequencies. A comparison with a previous model, which represents only the TAL explicitly and other segments using phenomenological relations, indicates that explicit representation of the proximal tubule and descending limb of the loop of Henle lowers the stability of the TGF system. Model simulations also suggest that the onset of limit-cycle oscillations results in increases in the time-averaged distal NaCl delivery, whereas distal fluid delivery is not much affected.


Assuntos
Relógios Biológicos/fisiologia , Transporte Biológico/fisiologia , Taxa de Filtração Glomerular/fisiologia , Alça do Néfron/fisiologia , Cloreto de Sódio/metabolismo , Animais , Simulação por Computador , Retroalimentação , Modelos Biológicos , Ratos
8.
Math Med Biol ; 30(3): 191-212, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22511507

RESUMO

One of the key mechanisms that mediate renal autoregulation is the tubuloglomerular feedback (TGF) system, which is a negative feedback loop in the kidney that balances glomerular filtration with tubular reabsorptive capacity. Tubular fluid flow, NaCl concentration and other related variables are known to exhibit TGF-mediated oscillations. In this study, we used a mathematical model of the thick ascending limb (TAL) of a short loop of Henle of the rat kidney to study the effects of (i) spatially inhomogeneous TAL NaCl active transport rate, (ii) spatially inhomogeneous tubular radius and (iii) compliance of the tubular walls on TGF-mediated dynamics. A bifurcation analysis of the TGF model equations was performed by deriving a characteristic equation and finding its roots. Results of the bifurcation analysis were validated via numerical simulations of the full model equations. Model results suggest that a higher TAL NaCl active transport rate or a smaller TAL radius near the loop bend gives rise to stable oscillatory solutions at sufficiently high TGF gain values, even with zero TGF delay. In addition, when the TAL walls are assumed to be compliant, the TGF system exhibits a heightened tendency to oscillate, a result that is consistent with predictions of a previous modelling study.


Assuntos
Taxa de Filtração Glomerular/fisiologia , Túbulos Renais/fisiologia , Alça do Néfron/fisiologia , Modelos Biológicos , Cloreto de Sódio/farmacologia , Animais , Simulação por Computador , Retroalimentação , Hemodinâmica/fisiologia , Ratos
9.
Int J Numer Method Biomed Eng ; 28(3): 369-83, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22577511

RESUMO

To study the transformation of fluctuations in filtration rate into tubular fluid chloride concentration oscillations alongside the macula densa, we have developed a mathematical model for tubuloglomerular feedback (TGF) signal transduction along the pars recta, the descending limb, and the thick ascending limb (TAL) of a short-looped nephron. The model tubules are assumed to have compliant walls and, thus, a tubular radius that depends on the transmural pressure difference. Previously, it has been predicted that TGF transduction by the TAL is a generator of nonlinearities: if a sinusoidal oscillation is added to a constant TAL flow rate, then the time required for a fluid element to traverse the TAL is oscillatory in time but nonsinusoidal. The results from the new model simulations presented here predict that TGF transduction by the loop of Henle is also, in the same sense, a generator of nonlinearities. Thus, this model predicts that oscillations in tubular fluid alongside the macula densa will be nonsinusoidal and will exhibit harmonics of sinusoidal perturbations of pars recta flow. Model results also indicate that the loop acts as a low-pass filter in the transduction of the TGF signal.


Assuntos
Alça do Néfron/fisiologia , Modelos Teóricos , Transdução de Sinais/fisiologia , Cloretos/metabolismo , Simulação por Computador , Retroalimentação , Taxa de Filtração Glomerular/fisiologia , Glomérulos Renais/metabolismo , Glomérulos Renais/fisiologia , Alça do Néfron/metabolismo , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...