Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(21): 14102-14109, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37180017

RESUMO

The upcycling of poly(ethylene terephthalate) (PET) waste can simultaneously produce value-added chemicals and reduce the growing environmental impact of plastic waste. In this study, we designed a chemobiological system to convert terephthalic acid (TPA), an aromatic monomer of PET, to ß-ketoadipic acid (ßKA), a C6 keto-diacid that functions as a building block for nylon-6,6 analogs. Using microwave-assisted hydrolysis in a neutral aqueous system, PET was converted to TPA with Amberlyst-15, a conventional catalyst with high conversion efficiency and reusability. The bioconversion process of TPA into ßKA used a recombinant Escherichia coli ßKA expressing two conversion modules for TPA degradation (tphAabc and tphB) and ßKA synthesis (aroY, catABC, and pcaD). To improve bioconversion, the formation of acetic acid, a deleterious factor for TPA conversion in flask cultivation, was efficiently regulated by deleting the poxB gene along with operating the bioreactor to supply oxygen. By applying two-stage fermentation consisting of the growth phase in pH 7 followed by the production phase in pH 5.5, a total of 13.61 mM ßKA was successfully produced with 96% conversion efficiency. This efficient chemobiological PET upcycling system provides a promising approach for the circular economy to acquire various chemicals from PET waste.

2.
Bioresour Technol ; 352: 127106, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35378283

RESUMO

Lignin valorization depends on microbial upcycling of various aromatic compounds in the form of a complex mixture, including p-coumaric acid and ferulic acid. In this study, an engineered Pseudomonas putida strain utilizing lignin-derived monomeric compounds via biological funneling was developed to produce 2-pyrone-4,6-dicarboxylic acid (PDC), which has been considered a promising building block for bioplastics. The biosynthetic pathway for PDC production was established by introducing the heterologous ligABC genes under the promoter Ptac in a strain lacking pcaGH genes to accumulate a precursor of PDC, i.e., protocatechuic acid. Based on the culture optimization, fed-batch fermentation of the final strain resulted in 22.7 g/L PDC with a molar yield of 1.0 mol/mol and productivity of 0.21 g/L/h. Subsequent purification of PDC at high purity was successfully implemented, which was consequently applied for the novel polyester.


Assuntos
Pseudomonas putida , Ácidos Dicarboxílicos/metabolismo , Lignina/metabolismo , Poliésteres/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Pironas
3.
Int J Biol Macromol ; 149: 593-599, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32001289

RESUMO

Sucrose utilization has been established in Escherichia coli strains by expression of Mannheimia succiniciproducens ß-fructofuranosidase (SacC), which hydrolyzes sucrose into glucose and fructose. Recombinant E. coli strains that can utilize sucrose were examined for their abilities to produce poly(3-hydroxybutyrate) [P(3HB)] and poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)] from sucrose. When recombinant E. coli strains expressing Ralstonia eutropha PhaCAB and SacC were cultured in MR medium containing 20 g/L of sucrose, all recombinant E. coli strains could produce P(3HB) from sucrose. Also, recombinant E. coli strains expressing Pseudomonas sp. MBEL 6-19 PhaC1437, Clostridium propionicum Pct540, R. eutropha PhaAB enzymes along with SacC could produce P(3HB-co-LA) from sucrose. Among the examined E. coli strains, recombinant E. coli XL1-Blue produced the highest contents of P(3HB) (53.60 ± 2.55 wt%) and P(3HB-co-LA) (29.44 ± 0.39 wt%). In the batch fermentations, recombinant E. coli XL1-Blue strains completely consumed 20 g/L of sucrose as the sole carbon source and supported the production of 3.76 g/L of P(3HB) and 1.82 g/L of P(3HB-co-LA) with 38.21 wt% P(3HB) and 20.88 wt% P(3HB-co-LA) contents, respectively. Recombinant E. coli strains developed in this study can be used to establish a cost-efficient biorefinery for the production of polyhydroxyalkanoates (PHAs) from sucrose, which is an abundant and inexpensive carbon source.


Assuntos
Escherichia coli/genética , Engenharia Metabólica , Poli-Hidroxialcanoatos/biossíntese , Sacarose/metabolismo , Cupriavidus necator/enzimologia , Cupriavidus necator/genética , Escherichia coli/metabolismo , Hidroxibutiratos/metabolismo , Pasteurellaceae/enzimologia , Pasteurellaceae/genética , Poliésteres/metabolismo , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/genética , Sacarose/química , beta-Frutofuranosidase/química , beta-Frutofuranosidase/genética
4.
Soft Matter ; 10(31): 5804-9, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24975589

RESUMO

In this paper, we report a C3-symmetric liquid crystal (LC) with sixfold alkyl peripheries exhibiting an unusual smectic E-like organization in the LC state. Based on conformational considerations, the smectic assembly is attributed to the formation of an endo-type Y conformer of asymmetric triazolyl and benzylic groups that cannot be accessed in other C3-symmetric molecules exclusively showing columnar assemblies. The Y conformers form a two-dimensional oblique lattice in the aromatic layers of the ordered smectic phase. In addition, the Y-shaped molecule in the smectic phases can change into a circular shape by the 1 : 1 hydrogen-bonding interaction with a gallic acid derivative, which leads to a hexagonal columnar LC phase. The triazole-based LC design concept proves the smectic LC assembly in the C3-symmetric system, and provides the supramolecular manipulation of LC morphologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...