Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomicro Lett ; 15(1): 76, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36976370

RESUMO

Although there is a high demand for absorption-dominant electromagnetic interference (EMI) shielding materials for 5G millimeter-wave (mmWave) frequencies, most current shielding materials are based on reflection-dominant conductive materials. While there are few absorption-dominant shielding materials proposed with magnetic materials, their working frequencies are usually limited to under 30 GHz. In this study, a novel multi-band absorption-dominant EMI shielding film with M-type strontium ferrites and a conductive grid is proposed. This film shows ultralow EMI reflection of less than 5% in multiple mmWave frequency bands with sub-millimeter thicknesses, while shielding more than 99.9% of EMI. The ultralow reflection frequency bands are controllable by tuning the ferromagnetic resonance frequency of M-type strontium ferrites and composite layer geometries. Two examples of shielding films with ultralow reflection frequencies, one for 39 and 52 GHz 5G telecommunication bands and the other for 60 and 77 GHz autonomous radar bands, are presented. The remarkably low reflectance and thinness of the proposed films provide an important advancement toward the commercialization of EMI shielding materials for 5G mmWave applications.

2.
ACS Appl Mater Interfaces ; 14(34): 39255-39264, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35975758

RESUMO

Electromagnetic wave (EMW)-absorbing materials, manufactured with composites of magnetic particles, are essential for maintaining a high complex permeability and modulated permittivity for impedance matching. However, commonly available EMW-absorbing materials are unsatisfactory owing to their low complex permeability in the high-frequency band. Herein, we report a thin, flexible EMW-absorbing membrane comprising shape-modulated FeCo nanobelts/boron nitride nanoparticles, which enables enhanced complex permeability in the S, C, and X bands (2-12 GHz). The boron nitride nanoparticles that are introduced to the FeCo nanobelts demonstrate control of the complex permittivity, leading to an effective impedance matching close to 1, consequently resulting in a high reflection loss value of -42.2 dB at 12.0 GHz with only 1.6 mm thickness. In addition, the incorporation of boron nitride nanoparticles improves the thermal conductivity for the heat dissipation of the absorbed electromagnetic wave energy. Overall, the comprehensive study of nanomaterial preparation and shape modulation technologies can lead to the fabrication of an excellent EMW-absorbing flexible composite membrane.

3.
ACS Appl Mater Interfaces ; 11(6): 6575-6580, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30663880

RESUMO

Selective filtration of near-infrared (NIR) regions is of primary importance to energy saving via thermal shielding. However, uniform coating of highly effective nanomaterials on flexible substrates remains very challenging. Here, we introduce new material processing and fabrication methodologies that manufacture electrospun copper sulfide/polyvinylpyrrolidone (CuS/PVP) nanowires for enhanced thermal shielding efficiency. Electrospinning offers well-dispersed CuS nanoparticles in a thermal shielding film, which is not achievable in typical solution coating processes. Directly deposited CuS/PVP nanowires on a flexible polymer membrane are enabled by a fluorination treatment that decreases the interfacial electrostatic repulsion. Monitoring of in situ temperature change of a box-shielded, CuS/PVP nanowire film demonstrates excellent NIR shielding efficiency (87.15%). Direct integration of the film with a model car and exposure to direct sunlight demonstrates about twice-higher shielding efficiency than commercial tungsten oxide films. Overall, the comprehensive study of nanomaterial preparation, surface treatment, and integration techniques allows the fabrication of highly flexible and reliable thermal shielding films.

4.
J Nanosci Nanotechnol ; 13(11): 7695-700, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24245317

RESUMO

We report here in the fabrication of enhanced thermal conductive pathway nanocomposites of boron nitride (BN)-coated polymethylsilsesquioxane (PMSQ) composite beads using isopropyl alcohol (IPA) as a mixing medium. Exfoliated and size-reduced boron nitride particles were successfully coated on the PMSQ beads and explained by surface charge differences. A homogeneous dispersion and coating of BN on the PMSQ beads using IPA medium was confirmed by SEM. Each condition of the composite powder was carried into the stainless still mould and then hot pressed in an electrically heated hot press machine. Three-dimensional percolation networks and conductive pathways created by exfoliated BN were precisely formed in the nanocomposites. The thermal conductivity of nanocomposites was measured by multiplying specific gravity, specific heat, and thermal diffusivity, based upon the laser flash method. Densification of the composite resulted in better thermal properties. For an epoxy reinforced composite with 30 vol% BN and PMSQ, a thermal conductivity of nine times higher than that of pristine PMSQ was observed.


Assuntos
Compostos de Boro/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Compostos de Organossilício/química , Polímeros/química , Adsorção , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Gravidade Específica , Propriedades de Superfície , Condutividade Térmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...