Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small ; 20(19): e2310873, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38279618

RESUMO

Ferroptosis, characterized by the induction of cell death via lipid peroxidation, has been actively studied over the last few years and has shown the potential to improve the efficacy of cancer nanomedicine in an iron-dependent manner. Radiation therapy, a common treatment method, has limitations as a stand-alone treatment due to radiation resistance and safety as it affects even normal tissues. Although ferroptosis-inducing drugs help alleviate radiation resistance, there are no safe ferroptosis-inducing drugs that can be considered for clinical application and are still in the research stage. Here, the effectiveness of combined treatment with radiotherapy with Fe and hyaluronic acid-based nanoparticles (FHA-NPs) to directly induce ferroptosis, considering the clinical applications is reported. Through the induction of ferroptosis by FHA-NPs and apoptosis by X-ray irradiation, the therapeutic efficiency of cancer is greatly improved both in vitro and in vivo. In addition, Monte Carlo simulations are performed to assess the physical interactions of the X-rays with the iron-oxide nanoparticle. The study provides a deeper understanding of the synergistic effect of ferroptosis and X-ray irradiation combination therapy. Furthermore, the study can serve as a valuable reference for elucidating the role and mechanisms of ferroptosis in radiation therapy.


Assuntos
Ferroptose , Nanopartículas , Ferroptose/efeitos dos fármacos , Humanos , Nanopartículas/química , Animais , Raios X , Linhagem Celular Tumoral , Camundongos , Apoptose/efeitos dos fármacos , Ácido Hialurônico/química , Terapia Combinada
2.
Microbiol Spectr ; 10(4): e0173422, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35758683

RESUMO

Vancomycin and ß-lactams are clinically important antibiotics that inhibit the formation of peptidoglycan cross-links, but their binding targets are different. The binding target of vancomycin is d-alanine-d-alanine (d-Ala-d-Ala), whereas that of ß-lactam is penicillin-binding proteins (PBPs). In this study, we revealed the divergent effects of peptidoglycan (PG) carboxypeptidase DacA on vancomycin and ß-lactam resistance in Escherichia coli and Bacillus subtilis. The deletion of DacA induced sensitivity to most ß-lactams, whereas it induced strong resistance toward vancomycin. Notably, both phenotypes did not have a strong association with ld-transpeptidases, which are necessary for the formation of PG 3-3 cross-links and covalent bonds between PG and an Lpp outer membrane (OM) lipoprotein. Vancomycin resistance was induced by an increased amount of decoy d-Ala-d-Ala residues within PG, whereas ß-lactam sensitivity was associated with physical interactions between DacA and PBPs. The presence of an OM permeability barrier strongly strengthened vancomycin resistance, but it significantly weakened ß-lactam sensitivity. Collectively, our results revealed two distinct functions of DacA, which involved inverse modulation of bacterial resistance to clinically important antibiotics, ß-lactams and vancomycin, and presented evidence for a link between DacA and PBPs. IMPORTANCE Bacterial PG hydrolases play important roles in various aspects of bacterial physiology, including cytokinesis, PG synthesis, quality control of PG, PG recycling, and stress adaptation. Of all the PG hydrolases, the role of PG carboxypeptidases is poorly understood, especially regarding their impacts on antibiotic resistance. We have revealed two distinct functions of PG carboxypeptidase DacA with respect to antibiotic resistance. The deletion of DacA led to sensitivity to most ß-lactams, while it caused strong resistance to vancomycin. Our study provides novel insights into the roles of PG carboxypeptidases in the regulation of antibiotic resistance and a potential clue for the development of a drug to improve the clinical efficacy of ß-lactam antibiotics.


Assuntos
Peptidoglicano , beta-Lactamas , Alanina/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Carboxipeptidases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Vancomicina/metabolismo , Vancomicina/farmacologia , Resistência a Vancomicina , beta-Lactamas/metabolismo , beta-Lactamas/farmacologia
3.
Plant Physiol Biochem ; 157: 219-228, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33129068

RESUMO

We examined the effects of high temperature (HT) at veraison (the onset of ripening) on coloration and anthocyanin biosynthesis in berry skins of 'Kyoho' grapevines (Vitis labruscana L.). The vines were subjected to control, HT (6 °C higher than the control for 10 days), and intermittent HT (IHT; 6 °C higher than the control for 4 days followed by control temperature for 3 days and then 6 °C higher than the control for another 3 days) conditions from 50 to 60 days after full bloom (DAFB) in temperature-controlled rooms. Under control conditions, berry skins were tinted purple from 55 DAFB and turned to reddish-purple thereafter until 80 DAFB, concurrently with the anthocyanin accumulation. The HT and IHT treatments greatly inhibited the coloration and anthocyanin accumulation, with greater inhibition by the HT treatment. The HT and IHT treatments significantly inhibited the expressions of early (EBGs) and late anthocyanin biosynthetic genes (LBGs), and the transcription factor gene VlMYBA2. Abscisic acid (ABA) contents in the control berry skins increased from 50 DAFB, peaked at 55 DAFB, and decreased thereafter. The HT and IHT treatments reduced the increase in ABA contents, with no significant difference between HT- and IHT-treated vines. Gibberellin (GA) contents decreased during veraison in the berry skins of control and IHT-treated vines, but remained unchanged in those of HT-treated vines. These results suggest that the coloration and anthocyanin biosynthesis in berry skins are associated with changes in the ABA/GA ratio.


Assuntos
Antocianinas/biossíntese , Frutas/fisiologia , Temperatura Alta , Vitis/fisiologia , Regulação da Expressão Gênica de Plantas
4.
Biochem Biophys Res Commun ; 501(2): 458-464, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29738773

RESUMO

PerR is a metal-dependent peroxide sensing transcription factor which controls the expression of genes involved in peroxide resistance. The function of Bacillus subtilis PerR is mainly dictated by the regulatory metal ion (Fe2+ or Mn2+) coordinated by three N-donor ligands (His37, His91, and His93) and two O-donor ligands (Asp85 and Asp104). While H2O2 sensing by PerR is mediated by Fe2+-dependent oxidation of N-donor ligand (either His37 or His91), one of the O-donor ligands (Asp104), but not Asp85, has been proposed as the key residue that regulates the sensitivity of PerR to H2O2. Here we systematically investigated the relative roles of two O-donor ligands of PerR in metal-binding affinity and H2O2 sensitivity in vivo and in vitro. Consistent with the previous report, in vitro the D104E-PerR could not sense low levels of H2O2 in the presence of excess Fe2+ sufficient for the formation of the Fe2+-bound D104E-PerR. However, the expression of PerR-regulated reporter fusion was not repressed by D104E-PerR in the presence of Fe2+, suggesting that Fe2+ is not an effective corepressor for this mutant protein in vivo. Furthermore, in vitro metal titration assays indicate that D104E-PerR has a significantly reduced affinity for Fe2+, but not for Mn2+, when compared to wild type PerR. These data indicate that the type of O-donor ligand (Asp vs. Glu) at position 104 is an important determinant in providing high Fe2+-binding affinity required for the sensing of the physiologically relevant Fe2+-levels, in addition to its role in rendering PerR highly sensitive to physiological levels of H2O2. In comparison, the D85E-PerR did not show a perturbed change in Fe2+-binding affinity, however, it displayed a slightly decreased sensitivity to H2O2 both in vivo and in vitro, suggesting that the type of O-donor ligand (Asp vs. Glu) at position 85 may be important for the fine-tuning of H2O2 sensitivity.


Assuntos
Proteínas de Bactérias/metabolismo , Peróxido de Hidrogênio/metabolismo , Ferro/metabolismo , Proteínas Repressoras/metabolismo , Substituição de Aminoácidos , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Polarização de Fluorescência , Ligantes , Oxirredução , Oxigênio/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
Biochem Biophys Res Commun ; 502(1): 48-54, 2018 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-29777693

RESUMO

Molybdenum cofactor (Moco), molybdopterin (MPT) complexed with molybdenum, is an essential cofactor required for the catalytic center of diverse enzymes in all domains of life. Since Moco cannot be taken up as a nutrient unlike many other cofactors, Moco requires de novo biosynthesis. During the synthesis of MPT, the sulfur atom on the C-terminus of MoaD is transferred to cyclic pyranopterin monophosphate (cPMP) which is bound in the substrate pocket of MoaE. MoaD is a ubiquitin-like (Ubl) protein and has a C-terminal di-Gly motif which is a common feature of Ubl proteins. Despite the importance of free C terminal di-Gly motif of MoaD as a sulfur carrier, some bacteria encode a fused MPT synthase in which MoaD- and MoaE-like domains are located on a single peptide. Although it has recently been reported that the fused MPT synthase MoaX from Mycobacterium tuberculosis is posttranslationally cleaved into functional MoaD and MoaE in M. smegmatis, the protease responsible for the cleavage of MoaD-MoaE fusion protein has remained unknown to date. Here we report that the JAMM/MPN+ domain containing metalloprotease DR0402 (JAMMDR) from Deinococcus radiodurans can cleave the MoaD-MoaE fusion protein DR2607, the sole MPT synthase in D. radiodurans, generating the MoaD having a C-terminal di-Gly motif. Furthermore, JAMMDR can also cleave off the MoaD from MoaD-eGFP fusion protein suggesting that JAMMDR recognizes the MoaD region rather than MoaE region in the cleaving process of MoaD-MoaE fusion protein.


Assuntos
Proteínas de Bactérias/metabolismo , Deinococcus/enzimologia , Metaloproteases/metabolismo , Sulfurtransferases/metabolismo , Sequência de Aminoácidos , Deinococcus/química , Deinococcus/metabolismo , Metaloproteases/química , Domínios Proteicos , Proteólise , Sulfurtransferases/química
6.
J Microbiol ; 55(6): 457-463, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28434086

RESUMO

PerR, a member of Fur family protein, is a metal-dependent H2O2 sensing transcription factor that regulates genes involved in peroxide stress response. Industrially important bacterium Bacillus licheniformis contains three PerR-like proteins (PerRBL, PerR2, and PerR3) compared to its close relative Bacillus subtilis. Interestingly, unlike other bacteria including B. subtilis, no authentic perR BL null mutant could be established for B. licheniformis. Thus, we constructed a conditional perR BL mutant using a xylose-inducible promoter, and investigated the genes under the control of PerRBL. PerRBL regulon genes include katA, mrgA, ahpC, pfeT, hemA, fur, and perR as observed for PerRBS. However, there is some variation in the expression levels of fur and hemA genes between B. subtilis and B. licheniformis in the derepressed state. Furthermore, katA, mrgA, and ahpC are strongly induced, whereas the others are only weakly or not induced by H2O2 treatment. In contrast to the B. subtilis perR null mutant which frequently gives rise to large colony phenotype mainly due to the loss of katA, the suppressors of B. licheniformis perR mutant, which can form colonies on LB agar, were all catalase-positive. Instead, many of the suppressors showed increased levels of siderophore production, suggesting that the suppressor mutation is linked to the fur gene. Consistent with this, perR fur double mutant could grow on LB agar without Fe supplementation, whereas perR katA double mutant could only grow on LB agar with Fe supplementation. Taken together, our data suggest that in B. licheniformis, despite the similarity in PerRBL and PerRBS regulon genes, perR is an essential gene required for growth and that the inability of perR null mutant to grow is mainly due to elevated expression of Fur.


Assuntos
Bacillus licheniformis/crescimento & desenvolvimento , Bacillus licheniformis/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Ferro/metabolismo , Proteínas Repressoras/genética , Proteínas de Bactérias/metabolismo , Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteínas Repressoras/metabolismo , Sideróforos/metabolismo
7.
Biochem Biophys Res Commun ; 484(1): 125-131, 2017 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-28104400

RESUMO

PerR, a member of Fur family of metal-dependent regulators, is a major peroxide sensor in many Gram positive bacteria, and controls the expression of genes involved in peroxide resistance. Bacillus licheniformis, a close relative to the well-studied model organism Bacillus subtilis, contains three PerR-like proteins (PerRBL, PerR2 and PerR3) in addition to Fur and Zur. In the present study, we characterized the role of PerRBL in B. licheniformis. In vitro and in vivo studies indicate that PerRBL, like PerRBS, uses either Fe2+ or Mn2+ as a corepressor and only the Fe2+-bound form of PerRBL senses low levels of H2O2 by iron-mediated histidine oxidation. Interestingly, regardless of the difference in H2O2 sensitivity, if any, between PerRBL and PerRBS, B. licheniformis expressing PerRBL or PerRBS could sense lower levels of H2O2 and was more sensitive to H2O2 than B. subtilis expressing PerRBL or PerRBS. This result suggests that the differences in cellular milieu between B. subtilis and B. licheniformis, rather than the intrinsic differences in PerRBS and PerRBLper se, affect the H2O2 sensing ability of PerR inside the cell and the H2O2 resistance of cell. In contrast, B. licheniformis and B. subtilis expressing Staphylococcus aureus PerR (PerRSA), which is more sensitive to H2O2 than PerRBL and PerRBS, were more resistant to H2O2 than those expressing either PerRBL or PerRBS. This result indicates that the sufficient difference in H2O2 susceptibility of PerR proteins can override the difference in cellular environment and affect the resistance of cell to H2O2.


Assuntos
Bacillus licheniformis/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Repressoras/metabolismo , Polarização de Fluorescência , Histidina/metabolismo , Peróxido de Hidrogênio/metabolismo , Ferro/metabolismo , Oxirredução , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
PLoS One ; 11(5): e0155539, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27176811

RESUMO

The ferric uptake regulator (Fur) family proteins include sensors of Fe (Fur), Zn (Zur), and peroxide (PerR). Among Fur family proteins, Fur and Zur are ubiquitous in most prokaryotic organisms, whereas PerR exists mainly in Gram positive bacteria as a functional homologue of OxyR. Gram positive bacteria such as Bacillus subtilis, Listeria monocytogenes and Staphylococcus aureus encode three Fur family proteins: Fur, Zur, and PerR. In this study, we identified five Fur family proteins from B. licheniformis: two novel PerR-like proteins (BL00690 and BL00950) in addition to Fur (BL05249), Zur (BL03703), and PerR (BL00075) homologues. Our data indicate that all of the five B. licheniformis Fur homologues contain a structural Zn2+ site composed of four cysteine residues like many other Fur family proteins. Furthermore, we provide evidence that the PerR-like proteins (BL00690 and BL00950) as well as PerRBL (BL00075), but not FurBL (BL05249) and ZurBL (BL03703), can sense H2O2 by histidine oxidation with different sensitivity. We also show that PerR2 (BL00690) has a PerR-like repressor activity for PerR-regulated genes in vivo. Taken together, our results suggest that B. licheniformis contains three PerR subfamily proteins which can sense H2O2 by histidine oxidation not by cysteine oxidation, in addition to Fur and Zur.


Assuntos
Bacillus licheniformis/metabolismo , Proteínas de Bactérias/metabolismo , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Peróxido de Hidrogênio/metabolismo , Anotação de Sequência Molecular , Família Multigênica , Oxirredução , Proteínas Repressoras/metabolismo , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA