Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732011

RESUMO

Immunoglobulin G-based monoclonal antibodies (mAbs) have been effective in treating various diseases, but their large molecular size can limit their penetration of tissue and efficacy in multifactorial diseases, necessitating the exploration of alternative forms. In this study, we constructed a phage display library comprising single-domain antibodies (sdAbs; or "VHHs"), known for their small size and remarkable stability, using a total of 1.6 × 109 lymphocytes collected from 20 different alpacas, resulting in approximately 7.16 × 1010 colonies. To assess the quality of the constructed library, next-generation sequencing-based high-throughput profiling was performed, analyzing approximately 5.65 × 106 full-length VHH sequences, revealing 92% uniqueness and confirming the library's diverse composition. Systematic characterization of the library revealed multiple sdAbs with high affinity for three therapeutically relevant antigens. In conclusion, our alpaca sdAb phage display library provides a versatile resource for diagnostics and therapeutics. Furthermore, the library's vast natural VHH antibody repertoire offers insights for generating humanized synthetic sdAb libraries, further advancing sdAb-based therapeutics.


Assuntos
Camelídeos Americanos , Biblioteca de Peptídeos , Anticorpos de Domínio Único , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/química , Animais , Camelídeos Americanos/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/genética , Ensaios de Triagem em Larga Escala/métodos , Afinidade de Anticorpos , Técnicas de Visualização da Superfície Celular/métodos
2.
Cell Rep Methods ; 3(10): 100617, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37852254

RESUMO

Co-occurrence of multiple myeloma and acute myelogenous leukemia is rare, with both malignancies often tracing back to multipotent hematopoietic stem cells. Cytogenetic techniques are the established baseline for diagnosis and characterization of complex hematological malignancies. In this study, we develop a workflow called Hema-seq to delineate clonal changes across various hematopoietic lineages through the integration of whole-genome sequencing, copy-number variations, cell morphology, and cytogenetic aberrations. In Hema-seq, cells are selected from Wright-stained slides and fluorescent probe-stained slides for sequencing. This technique therefore enables direct linking of whole-genome sequences to cytogenetic profiles. Through this method, we mapped sequential clonal alterations within the hematopoietic lineage, identifying critical shifts leading to myeloma and acute myeloid leukemia (AML) cell formations. By synthesizing data from each cell lineage, we provided insights into the hematopoietic tree's clonal evolution. Overall, this study highlights Hema-seq's capability in deciphering genomic heterogeneity in complex hematological malignancies, which can enable better diagnosis and treatment strategies.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Mieloma Múltiplo , Humanos , Neoplasias Hematológicas/diagnóstico , Aberrações Cromossômicas , Leucemia Mieloide Aguda/diagnóstico , Análise Citogenética , Mieloma Múltiplo/diagnóstico , Genômica
3.
Nat Commun ; 14(1): 5261, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644058

RESUMO

Determining mutational landscapes in a spatial context is essential for understanding genetically heterogeneous cell microniches. Current approaches, such as Multiple Displacement Amplification (MDA), offer high genome coverage but limited multiplexing, which hinders large-scale spatial genomic studies. Here, we introduce barcoded MDA (bMDA), a technique that achieves high-coverage genomic analysis of low-input DNA while enhancing the multiplexing capabilities. By incorporating cell barcodes during MDA, bMDA streamlines library preparation in one pot, thereby overcoming a key bottleneck in spatial genomics. We apply bMDA to the integrative spatial analysis of triple-negative breast cancer tissues by examining copy number alterations, single nucleotide variations, structural variations, and kataegis signatures for each spatial microniche. This enables the assessment of subclonal evolutionary relationships within a spatial context. Therefore, bMDA has emerged as a scalable technology with the potential to advance the field of spatial genomics significantly.


Assuntos
Aminas , Genômica , Evolução Biológica , Biblioteca Gênica
4.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983085

RESUMO

Antibody phage display is a key technology for the discovery and development of target-specific monoclonal antibodies (mAbs) for use in research, diagnostics, and therapy. The construction of a high-quality antibody library, with larger and more diverse antibody repertoires, is essential for the successful development of phage display-derived mAbs. In this study, a large human combinatorial single-chain variable fragment library (1.5 × 1011 colonies) was constructed from Epstein-Barr virus-infected human peripheral blood mononuclear cells stimulated with a combination of two of the activators of human B cells, the Toll-like receptor 7/8 agonist R848 and interleukin-2. Next-generation sequencing analysis with approximately 1.9 × 106 and 2.7 × 106 full-length sequences of heavy chain variable (VH) and κ light chain variable (Vκ) domains, respectively, revealed that the library consists of unique VH (approximately 94%) and Vκ (approximately 91%) sequences with greater diversity than germline sequences. Lastly, multiple unique mAbs with high affinity and broad cross-species reactivity could be isolated from the library against two therapeutically relevant target antigens, validating the library quality. These findings suggest that the novel antibody library we have developed may be useful for the rapid development of target-specific phage display-derived recombinant human mAbs for use in therapeutic and diagnostic applications.


Assuntos
Infecções por Vírus Epstein-Barr , Biblioteca de Peptídeos , Humanos , Leucócitos Mononucleares , Herpesvirus Humano 4 , Anticorpos Monoclonais/genética , Sequenciamento de Nucleotídeos em Larga Escala
6.
Nat Commun ; 13(1): 2540, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534484

RESUMO

Epitranscriptomic features, such as single-base RNA editing, are sources of transcript diversity in cancer, but little is understood in terms of their spatial context in the tumour microenvironment. Here, we introduce spatial-histopathological examination-linked epitranscriptomics converged to transcriptomics with sequencing (Select-seq), which isolates regions of interest from immunofluorescence-stained tissue and obtains transcriptomic and epitranscriptomic data. With Select-seq, we analyse the cancer stem cell-like microniches in relation to the tumour microenvironment of triple-negative breast cancer patients. We identify alternative splice variants, perform complementarity-determining region analysis of infiltrating T cells and B cells, and assess adenosine-to-inosine base editing in tumour tissue sections. Especially, in triple-negative breast cancer microniches, adenosine-to-inosine editome specific to different microniche groups is identified.


Assuntos
Adenosina Desaminase , Neoplasias de Mama Triplo Negativas , Adenosina/genética , Adenosina Desaminase/genética , Humanos , Inosina/genética , Células-Tronco Neoplásicas , Microambiente Tumoral/genética
7.
Nat Biotechnol ; 40(1): 47-53, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34326548

RESUMO

Complex oligonucleotide (oligo) libraries are essential materials for diverse applications in synthetic biology, pharmaceutical production, nanotechnology and DNA-based data storage. However, the error rates in synthesizing complex oligo libraries can be substantial, leading to increment in cost and labor for the applications. As most synthesis errors arise from faulty insertions and deletions, we developed a length-based method with single-base resolution for purification of complex libraries containing oligos of identical or different lengths. Our method-purification of multiplex oligonucleotide libraries by synthesis and selection-can be performed either step-by-step manually or using a next-generation sequencer. When applied to a digital data-encoded library containing oligos of identical length, the method increased the purity of full-length oligos from 83% to 97%. We also show that libraries encoding the complementarity-determining region H3 with three different lengths (with an empirically achieved diversity >106) can be simultaneously purified in one pot, increasing the in-frame oligo fraction from 49.6% to 83.5%.


Assuntos
DNA , Oligonucleotídeos , Oligonucleotídeos/genética
8.
Adv Mater ; 32(37): e2001249, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32725925

RESUMO

DNA-based data storage has attracted attention because of its higher physical density of the data and longer retention time than those of conventional digital data storage. However, previous DNA-based data storage lacked index features and the data quality of storage after a single access was not preserved, obstructing its industrial use. Here, DNA micro-disks, QR-coded micro-sized disks that harbor data-encoded DNA molecules for the efficient management of DNA-based data storage, are proposed. The two major features that previous DNA-based data-storage studies could not achieve are demonstrated. One feature is accessing data items efficiently by indexing the data-encoded DNA library. Another is achieving write-once-read-many (WORM) memory through the immobilization of DNA molecules on the disk and their enrichment through in situ DNA production. Through these features, the reliability of DNA-based data storage is increased by allowing selective and multiple accession of data-encoded DNA with lower data loss than previous DNA-based data storage methods.


Assuntos
Dispositivos de Armazenamento em Computador , DNA , Armazenamento e Recuperação da Informação/métodos
9.
ACS Synth Biol ; 9(6): 1376-1384, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32383864

RESUMO

Synthesizing engineered bacteriophages (phages) for human use has potential in various applications ranging from drug screening using a phage display to clinical use using phage therapy. However, the engineering of phages conventionally involves the use of an in vivo system that has low production efficiency because of high virulence against the host and low transformation efficiency. To circumvent these issues, de novo phage genome synthesis using chemically synthesized oligonucleotides (oligos) has increased the potential for engineering phages in a cell-free system. Here, we present a cell-free, low-cost, de novo gene synthesis technology called Sniper assembly for phage genome construction. With massively parallel sequencing of microarray-synthesized oligos, we generated and identified approximately 100 000 clonal DNA clusters in vitro and 5000 error-free ones in a cell-free environment. To demonstrate its practical application, we synthesized the Acinetobacter phage AP205 genome (4268 bp) using 65 sequence-verified DNA clones. Compared to previous reports, Sniper assembly lowered the genome synthesis cost ($0.0137/bp) by producing low-cost sequence-verified DNA.


Assuntos
Bacteriófagos/genética , Sistema Livre de Células , Genoma Viral , Oligonucleotídeos/metabolismo , Clonagem Molecular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência com Séries de Oligonucleotídeos , Oligonucleotídeos/síntese química , Análise de Sequência de DNA
10.
Biomolecules ; 10(3)2020 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-32182714

RESUMO

c-Met is a promising target in cancer therapy for its intrinsic oncogenic properties. However, there are currently no c-Met-specific inhibitors available in the clinic. Antibodies blocking the interaction with its only known ligand, hepatocyte growth factor, and/or inducing receptor internalization have been clinically tested. To explore other therapeutic antibody mechanisms like Fc-mediated effector function, bispecific T cell engagement, and chimeric antigen T cell receptors, a diverse panel of antibodies is essential. We prepared a chicken immune scFv library, performed four rounds of bio-panning, obtained 641 clones using a high-throughput clonal retrieval system (TrueRepertoireTM, TR), and found 149 antigen-reactive scFv clones. We also prepared phagemid DNA before the start of bio-panning (round 0) and, after each round of bio-panning (round 1-4), performed next-generation sequencing of these five sets of phagemid DNA, and identified 860,207 HCDR3 clonotypes and 443,292 LCDR3 clonotypes along with their clonal abundance data. We then established a TR data set consisting of antigen reactivity for scFv clones found in TR analysis and the clonal abundance of their HCDR3 and LCDR3 clonotypes in five sets of phagemid DNA. Using the TR data set, a random forest machine learning algorithm was trained to predict the binding properties of in silico HCDR3 and LCDR3 clonotypes. Subsequently, we synthesized 40 HCDR3 and 40 LCDR3 clonotypes predicted to be antigen reactive (AR) and constructed a phage-displayed scFv library called the AR library. In parallel, we also prepared an antigen non-reactive (NR) library using 10 HCDR3 and 10 LCDR3 clonotypes predicted to be NR. After a single round of bio-panning, we screened 96 randomly-selected phage clones from the AR library and found out 14 AR scFv clones consisting of 5 HCDR3 and 11 LCDR3 AR clonotypes. We also screened 96 randomly-selected phage clones from the NR library, but did not identify any AR clones. In summary, machine learning algorithms can provide a method for identifying AR antibodies, which allows for the characterization of diverse antibody libraries inaccessible by traditional methods.


Assuntos
Antígenos/imunologia , Proteínas Aviárias , Galinhas , Clonagem Molecular , Aprendizado de Máquina , Análise de Sequência de DNA , Anticorpos de Cadeia Única , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/imunologia , Galinhas/genética , Galinhas/imunologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia
11.
Sci Rep ; 9(1): 6582, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036920

RESUMO

DNA-based data storage has emerged as a promising method to satisfy the exponentially increasing demand for information storage. However, practical implementation of DNA-based data storage remains a challenge because of the high cost of data writing through DNA synthesis. Here, we propose the use of degenerate bases as encoding characters in addition to A, C, G, and T, which augments the amount of data that can be stored per length of DNA sequence designed (information capacity) and lowering the amount of DNA synthesis per storing unit data. Using the proposed method, we experimentally achieved an information capacity of 3.37 bits/character. The demonstrated information capacity is more than twice when compared to the highest information capacity previously achieved. The proposed method can be integrated with synthetic technologies in the future to reduce the cost of DNA-based data storage by 50%.


Assuntos
DNA/genética , Bases de Dados de Ácidos Nucleicos , Armazenamento e Recuperação da Informação , Sequência de Bases/genética , Análise de Sequência de DNA
12.
Genes Genomics ; 41(5): 573-581, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30830681

RESUMO

BACKGROUND: Short hairpin RNAs (shRNAs) expressed from vectors have been used as an effective means of exploiting the RNA interference (RNAi) pathway in mammalian cells. Genome-scale screening with shRNA libraries has been used to investigate the relationship between genotypes and phenotypes on a large scale. Although several methods have been developed to construct shRNA libraries, their broad application has been limited by the high cost of constructing these libraries. OBJECTIVE: We develop a new method that efficiently constructs a shRNA library at low cost, using treatments with several enzymes and an oligonucleotide library. METHODS: The library of shRNA expression cassettes, which were cloned into a lentiviral plasmid, was produced through several enzymatic reactions, starting from a library of 20,000 different short oligonucleotides produced by microarray-based oligonucleotide synthesis. RESULTS: The NGS sequence analysis of the library shows that 99.8% of them (19,956 from 20,000 sequences) were contained in the library: 63.2% of them represent the correct sequences and the rest showed one or two base pair differences from the expected sequences. CONCLUSION: Considering the ease of our method, shRNA libraries of new genomes and of specific populations of genes can be prepared in a short period of time for genome-scale RNAi library screening.


Assuntos
Técnicas de Química Combinatória/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Interferente Pequeno/genética , Animais , Biblioteca Gênica , Humanos , Oligonucleotídeos , Interferência de RNA/fisiologia , RNA Interferente Pequeno/síntese química
13.
Nat Commun ; 10(1): 977, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816127

RESUMO

The advent of next-generation sequencing (NGS) has accelerated biomedical research by enabling the high-throughput analysis of DNA sequences at a very low cost. However, NGS has limitations in detecting rare-frequency variants (< 1%) because of high sequencing errors (> 0.1~1%). NGS errors could be filtered out using molecular barcodes, by comparing read replicates among those with the same barcodes. Accordingly, these barcoding methods require redundant reads of non-target sequences, resulting in high sequencing cost. Here, we present a cost-effective NGS error validation method in a barcode-free manner. By physically extracting and individually amplifying the DNA clones of erroneous reads, we distinguish true variants of frequency > 0.003% from the systematic NGS error and selectively validate NGS error after NGS. We achieve a PCR-induced error rate of 2.5×10-6 per base per doubling event, using 10 times less sequencing reads compared to those from previous studies.


Assuntos
Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Clonagem Molecular , Código de Barras de DNA Taxonômico , DNA Bacteriano/genética , Escherichia coli/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/normas , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Reação em Cadeia da Polimerase , Controle de Qualidade , Análise de Sequência de DNA/normas , Análise de Sequência de DNA/estatística & dados numéricos
14.
MAbs ; 11(3): 532-545, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30735467

RESUMO

In antibody discovery, in-depth analysis of an antibody library and high-throughput retrieval of clones in the library are crucial to identifying and exploiting rare clones with different properties. However, existing methods have technical limitations, such as low process throughput from the laborious cloning process and waste of the phenotypic screening capacity from unnecessary repetitive tests on the dominant clones. To overcome the limitations, we developed a new high-throughput platform for the identification and retrieval of clones in the library, TrueRepertoire™. This new platform provides highly accurate sequences of the clones with linkage information between heavy and light chains of the antibody fragment. Additionally, the physical DNA of clones can be retrieved in high throughput based on the sequence information. We validated the high accuracy of the sequences and demonstrated that there is no platform-specific bias. Moreover, the applicability of TrueRepertoire™ was demonstrated by a phage-displayed single-chain variable fragment library targeting human hepatocyte growth factor protein.


Assuntos
Proteínas Aviárias , Técnicas de Visualização da Superfície Celular/métodos , Anticorpos de Cadeia Única , Animais , Proteínas Aviárias/biossíntese , Proteínas Aviárias/química , Proteínas Aviárias/genética , Bacteriófagos/genética , Galinhas , Anticorpos de Cadeia Única/biossíntese , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética
15.
Nucleic Acids Res ; 46(9): e55, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29529247

RESUMO

Selective retrieval of sequence-verified oligonucleotides (oligos) from next-generation sequencing (NGS) flow cells, termed megacloning, promises accurate and reliable gene synthesis. However, gene assembly requires a complete collection of overlapping sense and nonsense oligos, and megacloning does not typically guarantee the complete production of sequence-verified oligos. Therefore, missing oligos must be provided via repetitive rounds of megacloning, which introduces a bottleneck for scaled-up efforts at gene assembly. Here, we introduce the concept of high-depth tiled oligo design to successfully utilize megacloned oligos for gene synthesis. Using acquired oligos from a single round of the megacloning process, we assembled 72 of 81 target Cas9-coding gene variants. We further validated 62 of these cas9 constructs, and deposited the plasmids to Addgene for subsequent functional characterization by the scientific community. This study demonstrates the utility of using sequence-verified oligos for DNA assembly and provides a practical and reliable optimized method for high-throughput gene synthesis.


Assuntos
Proteína 9 Associada à CRISPR/genética , Genes Sintéticos , Oligonucleotídeos , Simulação por Computador , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência com Séries de Oligonucleotídeos , Oligonucleotídeos/química , Análise de Sequência de DNA
16.
Nat Commun ; 6: 6073, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25641679

RESUMO

Writing DNA plays a significant role in the fields of synthetic biology, functional genomics and bioengineering. DNA clones on next-generation sequencing (NGS) platforms have the potential to be a rich and cost-effective source of sequence-verified DNAs as a precursor for DNA writing. However, it is still very challenging to retrieve target clonal DNA from high-density NGS platforms. Here we propose an enabling technology called 'Sniper Cloning' that enables the precise mapping of target clone features on NGS platforms and non-contact rapid retrieval of targets for the full utilization of DNA clones. By merging the three cutting-edge technologies of NGS, DNA microarray and our pulse laser retrieval system, Sniper Cloning is a week-long process that produces 5,188 error-free synthetic DNAs in a single run of NGS with a single microarray DNA pool. We believe that this technology has potential as a universal tool for DNA writing in biological sciences.


Assuntos
DNA/química , DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...