Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomol Ther (Seoul) ; 28(5): 473-481, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32536618

RESUMO

Axl receptor tyrosine kinase has been implicated in cancer progression, invasion, and metastasis in various cancer types. Axl overexpression has been observed in many cancers, and selective inhibitors of Axl, including R428, may be promising therapeutic agents for several human cancers, such as breast, lung, and pancreatic cancers. Here, we examined the cell growth inhibition mediated by R428 and auranofin individually as well as in combination in the human breast cancer cell lines MCF-7 and MDAMB- 231 to identify new advanced combination treatments for human breast cancer. Our data showed that combination therapy with R428 and auranofin markedly inhibited cancer cell proliferation. Isobologram analyses of these cells indicated a clear synergism between R428 and auranofin with a combination index value of 0.73. The combination treatment promoted apoptosis as indicated by caspase 3 activation and poly (ADP-ribose) polymerase cleavage. Cancer cell migration was also significantly inhibited by this combination treatment. Moreover, we found that combination therapy significantly increased the expression level of Bax, a mitochondrial proapoptotic factor, but decreased that of the X-linked inhibitor of apoptosis protein. Furthermore, the suppression of cell viability and induction of Bax expression by the combination treatment were recovered by treatment with N-acetylcysteine. In conclusion, our data demonstrated that combined treatment with R428 and auranofin synergistically induced apoptosis in human breast cancer cells and may thus serve as a novel and valuable approach for cancer therapy.

2.
J Toxicol Environ Health A ; 81(9): 278-287, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29473798

RESUMO

Cytochrome P450 1B1 (CYP1B1), a well-known oncogene, has garnered wide attention because of its tumor-specific expression pattern and actions as a carcinogenic factor. Although CYP1B1 might play a crucial role in carcinogenesis, the detailed molecular mechanisms underlying oncogenic involvement in cancer development remain unclear. The present study investigated the manner in which CYP1B1 promotes survival of various cancer cells. Treatment with 2,2',4,6'-tetramethoxystilbene (TMS), a specific CYP1B1 inhibitor, significantly inhibited cell viability in human breast cancer and leukemia cell lines, including MCF-7, MDA-MB-231, HL-60, and U937 cells. In order to characterize the cellular functions of CYP1B1 associated with cancer cell survival, the relationship between this oncogene and death receptor 4 (DR4) was determined. Following induction or inhibition of CYP1B1, mRNA and protein expression levels of DR4 were measured, and this oncogene was found to significantly repress DR4 mRNA and protein expression. Further, the suppression of DR4 by CYP1B1 was restored with 5-aza-2'-deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor, indicating that DNA methylation may be involved in CYP1B1-mediated DR4 inhibition. Methylation-specific polymerase chain reaction (PCR) in CYP1B1-overexpressed HL-60 cells revealed that this oncogene induced hypermethylation on DR4 promoter. Interestingly, data showed that DR4 suppression of CYP1B1 is mediated by the DNA-binding ability of specificity protein 1 (Sp1). These findings suggest that CYP1B1 promotes cancer cell survival through involvement of DNA methylation-mediated DR4 inhibition and that Sp1 may act as key mediator required for oncogenic action.


Assuntos
Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocromo P-450 CYP1B1/fisiologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Fator de Transcrição Sp1/genética , Linhagem Celular Tumoral , Citocromo P-450 CYP1B1/genética , Metilação de DNA/efeitos dos fármacos , Células HL-60 , Humanos , Células MCF-7 , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fator de Transcrição Sp1/metabolismo , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...