Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 162(4): 1212-9, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19463904

RESUMO

Patients with long-standing diabetes commonly develop diabetic encephalopathy, which is characterized by cognitive impairment and dementia. Oxidative stress-induced neuronal cell apoptosis is a contributing factor. Glucagon-like peptide (GLP)-1 has recently become an attractive treatment modality for patients with diabetes. It also readily enters the brain, prevents neuronal cell apoptosis, and improves the cognitive impairment characteristic of Alzheimer's disease. Therefore, we investigated whether GLP-1 could protect against oxidative stress-induced neuronal cell apoptosis in pheochromocytoma (PC12) cells. PC12 cells were exposed to 1 mM methylglyoxal (MG) or MG plus 3.30 microg/ml GLP-1. Cell apoptosis, expression and phosphorylation of phosphatidylinositol-3 kinase/Akt/mammalian target of rapamycin/gamma-glutamylcysteine ligase catalytic subunit (GCLc), and redox balance were then determined. The data showed that MG induced PC12 apoptosis in accordance with the redox (glutathione (GSH) and GSH/glutathione disulfide [GSSG]) imbalance. GLP-1 protected against this MG-induced apoptosis, which corresponded to the phosphorylation of PI3K, Akt, and mTOR, as well as the upregulation of GCLc and the restoration of the redox imbalance. Inhibitors of PI3K (LY294002), Akt (Akt-I), and mTOR (rapamycin) reduced the GLP-1-induced GCLc upregulation and its protection against MG-induced PC12 apoptosis. The GLP-1-induced redox restoration was also attenuated by rapamycin. In conclusion, the neuroprotective effect of GLP-1 is due to an enhancement of PI3K/Akt/mTOR/GCLc/redox signaling.


Assuntos
Apoptose/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Aldeído Pirúvico/farmacologia , Animais , Domínio Catalítico , Glutamato-Cisteína Ligase/fisiologia , Oxirredução , Estresse Oxidativo , Células PC12 , Ratos , Transdução de Sinais , Serina-Treonina Quinases TOR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...