Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(7): 1601-1616, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38660803

RESUMO

BACKGROUND: RAB27A is a member of the RAS oncogene superfamily of GTPases and regulates cell secretory function. It, is expressed within blood vessels and perivascular adipose tissue. We hypothesized that loss of RAB27A would alter cardiovascular function. METHODS: Body weight of Rab27aash mice was measured from 2 to 18 months of age, along with glucose resorption at 6 and 12 months of age and glucose sensitivity at 18 months of age. Body weight and cellular and molecular features of perivascular adipose tissue and aortic tissue were examined in a novel C57BL/6J Rab27a null strain. Analyses included morphometric quantification and proteomic analyses. Wire myography measured vasoreactivity, and echocardiography measured cardiac function. Comparisons across ages and genotypes were evaluated via 2-way ANOVA with multiple comparison testing. Significance for myography was determined via 4-parameter nonlinear regression testing. RESULTS: Genome-wide association data linked rare human RAB27A variants with body mass index and glucose handling. Changes in glucose tolerance were observed in Rab27aash male mice at 18 months of age. In WT (wild-type) and Rab27a null male mice, body weight, adipocyte lipid area, and aortic area increased with age. In female mice, only body weight increased with age, independent of RAB27A presence. Protein signatures from male Rab27a null mice suggested greater associations with cardiovascular and metabolic phenotypes compared with female tissues. Wire myography results showed Rab27a null males exhibited increased vasoconstriction and reduced vasodilation at 8 weeks of age. Rab27a null females exhibited increased vasoconstriction and vasodilation at 20 weeks of age. Consistent with these vascular changes, male Rab27a null mice experienced age-related cardiomyopathy, with severe differences observed by 21 weeks of age. CONCLUSIONS: Global RAB27A loss impacted perivascular adipose tissue and thoracic aorta proteomic signatures, altered vasocontractile responses, and decreased left ventricular ejection fraction in mice.


Assuntos
Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas rab27 de Ligação ao GTP , Animais , Proteínas rab27 de Ligação ao GTP/genética , Proteínas rab27 de Ligação ao GTP/metabolismo , Masculino , Feminino , Camundongos , Fenótipo , Tecido Adiposo/metabolismo , Vasodilatação , Vasoconstrição , Fatores Etários , Proteômica , Fatores Sexuais , Aorta/metabolismo , Aorta/fisiopatologia , Humanos
2.
Genes (Basel) ; 14(10)2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37895313

RESUMO

Perivascular adipose tissue (PVAT) regulates vascular function by secreting vasoactive substances. In mice, Notch signaling is activated in the PVAT during diet-induced obesity, and leads to the loss of the thermogenic phenotype and adipocyte whitening due to increased lipid accumulation. We used the Adiponectin-Cre (Adipoq-Cre) strain to activate a ligand-independent Notch1 intracellular domain transgene (N1ICD) to drive constitutive Notch signaling in the adipose tissues (N1ICD;Adipoq-Cre). We previously found that constitutive activation of Notch1 signaling in the PVAT phenocopied the effects of diet-induced obesity. To understand the downstream pathways activated by Notch signaling, we performed a proteomic analysis of the PVAT from control versus N1ICD;Adipoq-Cre mice. This comparison identified prominent changes in the protein signatures related to metabolism, adipocyte homeostasis, mitochondrial function, and ferroptosis. PVAT-derived stromal vascular fraction cells were derived from our mouse strains to study the cellular and molecular phenotypes during adipogenic induction. We found that cells with activated Notch signaling displayed decreased mitochondrial respiration despite similar levels of adipogenesis and mitochondrial number. We observed variable regulation of the proteins related to mitochondrial dynamics and ferroptosis, including PHB3, PINK1, pDRP1, and the phospholipid hydroperoxidase GPX4. Mitochondria regulate some forms of ferroptosis, which is a regulated process of cell death driven by lipid peroxidation. Accordingly, we found that Notch activation promoted lipid peroxidation and ferroptosis in PVAT-derived adipocytes. Because the PVAT phenotype is a regulator of vascular reactivity, we tested the effect of Notch activation in PVAT on vasoreactivity using wire myography. The aortae from the N1ICD;Adipoq-Cre mice had increased vasocontraction and decreased vasorelaxation in a PVAT-dependent and age-dependent manner. Our data provide support for the novel concept that increased Notch signaling in the adipose tissue leads to PVAT whitening, impaired mitochondrial function, increased ferroptosis, and loss of a protective vasodilatory signal. Our study advances our understanding of how Notch signaling in adipocytes affects mitochondrial dynamics, which impacts vascular physiology.


Assuntos
Tecido Adiposo , Proteômica , Camundongos , Animais , Tecido Adiposo/metabolismo , Transdução de Sinais , Obesidade/metabolismo , Adiponectina/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo
3.
Aging Cell ; 22(4): e13784, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36798047

RESUMO

Neural communication between the brain and adipose tissues regulates energy expenditure and metabolism through modulation of adipose tissue functions. We have recently demonstrated that under pathophysiological conditions (obesity, diabetes, and aging), total subcutaneous white adipose tissue (scWAT) innervation is decreased ('adipose neuropathy'). With advanced age in the C57BL/6J mouse, small fiber peripheral nerve endings in adipose tissue die back, resulting in reduced contact with adipose-resident blood vessels and other cells. This vascular neuropathy and parenchymal neuropathy together likely pose a physiological challenge for tissue function. In the current work, we used the genetically diverse HET3 mouse model to investigate the incidence of peripheral neuropathy and adipose tissue dysregulation across several ages in both male and female mice. We also investigated the anti-aging treatment rapamycin, an mTOR inhibitor, as a means to prevent or reduce adipose neuropathy. We found that HET3 mice displayed a reduced neuropathy phenotype compared to inbred C56BL/6 J mice, indicating genetic contributions to this aging phenotype. Compared to female HET3 mice, male HET3 mice had worse neuropathic phenotypes by 62 weeks of age. Female HET3 mice appeared to have increased protection from neuropathy until advanced age (126 weeks), after reproductive senescence. We found that rapamycin overall had little impact on neuropathy measures, and actually worsened adipose tissue inflammation and fibrosis. Despite its success as a longevity treatment in mice, higher doses and longer delivery paradigms for rapamycin may lead to a disconnect between life span and beneficial health outcomes.


Assuntos
Doenças do Sistema Nervoso Periférico , Sirolimo , Masculino , Feminino , Animais , Camundongos , Sirolimo/farmacologia , Longevidade/genética , Camundongos Endogâmicos C57BL , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/genética
4.
Arterioscler Thromb Vasc Biol ; 40(9): 2227-2243, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32640901

RESUMO

OBJECTIVE: Perivascular adipose tissue (PVAT) surrounding arteries supports healthy vascular function. During obesity, PVAT loses its vasoprotective effect. We study pathological conversion of PVAT, which involves molecular changes in protein profiles and functional changes in adipocytes. Approach and Results: C57BL6/J mice were fed a 60% high-fat diet for 12 weeks or a cardioprotective 30% calorie-restricted diet for 5 weeks. Proteomic analysis identified PVAT as a molecularly distinct adipose depot, and novel markers for thermogenic adipocytes, such as GRP75 (stress-70 protein, mitochondrial), were identified. High-fat diet increased the similarity of protein signatures in PVAT and brown adipose, suggesting activation of a conserved whitening pathway. The whitening phenotype was characterized by suppression of UCP1 (uncoupling protein 1) and increased lipid deposition, leptin, and inflammation, and specifically in PVAT, elevated Notch signaling. Conversely, PVAT from calorie-restricted mice had decreased Notch signaling and less lipid. Using the Adipoq-Cre strain, we constitutively activated Notch1 signaling in adipocytes, which phenocopied the changes in PVAT caused by a high-fat diet, even on a standard diet. Preadipocytes from mouse PVAT expressed Sca1, CD140a, Notch1, and Notch2, but not CD105, showing differences compared with preadipocytes from other depots. Inhibition of Notch signaling during differentiation of PVAT-derived preadipocytes reduced lipid deposition and adipocyte marker expression. CONCLUSIONS: PVAT shares features with other adipose depots, but has a unique protein signature that is regulated by dietary stress. Increased Notch signaling in PVAT is sufficient to initiate the pathological conversion of PVAT by promoting adipogenesis and lipid accumulation and may thus prime the microenvironment for vascular disease.


Assuntos
Adipócitos Brancos/metabolismo , Adipogenia , Tecido Adiposo Branco/metabolismo , Lipogênese , Obesidade/metabolismo , Receptores Notch/metabolismo , Adipócitos Brancos/patologia , Tecido Adiposo Branco/patologia , Adiposidade , Animais , Ataxina-1/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Restrição Calórica , Dieta Hiperlipídica , Modelos Animais de Doenças , Endoglina/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/genética , Obesidade/patologia , Fenótipo , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Proteômica , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptor Notch2/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores Notch/genética , Transdução de Sinais
5.
Am J Physiol Heart Circ Physiol ; 315(6): H1614-H1626, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30359089

RESUMO

Cadherin-11 (CDH11) is upregulated in a variety of fibrotic diseases, including arthritis and calcific aortic valve disease. Our recent work has identified CDH11 as a potential therapeutic target and shown that treatment with a CDH11 functional blocking antibody can prevent hallmarks of calcific aortic valve disease in mice. The present study investigated the role of CDH11 in regulating the mechanobiological behavior of valvular interstitial cells believed to cause calcification. Aortic valve interstitial cells were harvested from Cdh11+/+, Cdh11+/-, and Cdh11-/- immortomice. Cells were subjected to inflammatory cytokines transforming growth factor (TGF)-ß1 and IL-6 to characterize the molecular mechanisms by which CDH11 regulates their mechanobiological changes. Histology was performed on aortic valves from Cdh11+/+, Cdh11+/-, and Cdh11-/- mice to identify key responses to CDH11 deletion in vivo. We showed that CDH11 influences cell behavior through its regulation of contractility and its ability to bind substrates via focal adhesions. We also show that transforming growth factor-ß1 overrides the normal relationship between CDH11 and smooth muscle α-actin to exacerbate the myofibroblast disease phenotype. This phenotypic switch is potentiated through the IL-6 signaling axis and could act as a paracrine mechanism of myofibroblast activation in neighboring aortic valve interstitial cells in a positive feedback loop. These data suggest CDH11 is an important mediator of the myofibroblast phenotype and identify several mechanisms by which it modulates cell behavior. NEW & NOTEWORTHY Cadherin-11 influences valvular interstitial cell contractility by regulating focal adhesions and inflammatory cytokine secretion. Transforming growth factor-ß1 overrides the normal balance between cadherin-11 and smooth muscle α-actin expression to promote a myofibroblast phenotype. Cadherin-11 is necessary for IL-6 and chitinase-3-like protein 1 secretion, and IL-6 promotes contractility. Targeting cadherin-11 could therapeutically influence valvular interstitial cell phenotypes in a multifaceted manner.


Assuntos
Valva Aórtica/metabolismo , Caderinas/metabolismo , Mecanotransdução Celular , Miofibroblastos/metabolismo , Actinas/metabolismo , Animais , Valva Aórtica/citologia , Caderinas/genética , Células Cultivadas , Adesões Focais/metabolismo , Interleucina-6/metabolismo , Camundongos , Ligação Proteica , Fator de Necrose Tumoral alfa/metabolismo
6.
Cardiovasc Drugs Ther ; 32(5): 519-530, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30105417

RESUMO

PURPOSE: Perivascular adipose tissue (PVAT) surrounds blood vessels and regulates vascular tone through paracrine secretion of cytokines. During conditions promoting cardiometabolic dysfunction, such as obesity, cytokine secretion is altered towards a proinflammatory and proatherogenic profile. Despite the clinical implications for cardiovascular disease, studies addressing the biology of human PVAT remain limited. We are interested in characterizing the resident adipose progenitor cells (APCs) because of their potential role in PVAT expansion during obesity. We also focused on proteins regulating paracrine interactions, including the small GTPase Rab27a, which regulates protein trafficking and secretion. METHODS: PVAT from the ascending aorta was collected from patients with severe cardiovascular disease undergoing coronary artery bypass grafting (CABG). Freshly-isolated PVAT was digested and APC expanded in culture for characterizing progenitor markers, evaluating adipogenic potential and assessing the function(s) of Rab27a. RESULTS: Using flow cytometry, RT-PCR, and immunoblot, we characterized APC from human PVAT as negative for CD45 and CD31 and expressing CD73, CD105, and CD140A. These APCs differentiate into multilocular, UCP1-producing adipocytes in vitro. Rab27a was detected in interstitial cells of human PVAT in vivo and along F-actin tracks of PVAT-APC in vitro. Knockdown of Rab27a using siRNA in PVAT-APC prior to induction resulted in a marked reduction in lipid accumulation and reduced expression of adipogenic differentiation markers. CONCLUSIONS: PVAT-APC from CABG donors express common adipocyte progenitor markers and differentiate into UCP1-containing adipocytes. Rab27a has an endogenous role in promoting the maturation of adipocytes from human PVAT-derived APC.


Assuntos
Adipogenia , Tecido Adiposo/enzimologia , Células-Tronco/enzimologia , Proteínas rab27 de Ligação ao GTP/metabolismo , Tecido Adiposo/citologia , Adulto , Idoso , Aorta , Biomarcadores/metabolismo , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Masculino , Pessoa de Meia-Idade , Fenótipo , Transdução de Sinais , Proteínas rab27 de Ligação ao GTP/genética
7.
J Cell Sci ; 130(14): 2382-2393, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28584191

RESUMO

The tyrosine kinase Src acts as a key regulator of cell motility by phosphorylating multiple protein substrates that control cytoskeletal and adhesion dynamics. In an earlier phosphotyrosine proteomics study, we identified a novel Rho-GTPase activating protein, now known as ARHGAP42, as a likely biologically relevant Src substrate. ARHGAP42 is a member of a family of RhoGAPs distinguished by tandem BAR-PH domains lying N-terminal to the GAP domain. Like other family members, ARHGAP42 acts preferentially as a GAP for RhoA. We show that Src principally phosphorylates ARHGAP42 on tyrosine 376 (Tyr-376) in the short linker between the BAR-PH and GAP domains. The expression of ARHGAP42 variants in mammalian cells was used to elucidate its regulation. We found that the BAR domain is inhibitory toward the GAP activity of ARHGAP42, such that BAR domain deletion resulted in decreased active GTP-bound RhoA and increased cell motility. With the BAR domain intact, ARHGAP42 GAP activity could be activated by phosphorylation of Tyr-376 to promote motile cell behavior. Thus, phosphorylation of ARHGAP42 Tyr-376 is revealed as a novel regulatory event by which Src can affect actin dynamics through RhoA inhibition.


Assuntos
Movimento Celular/fisiologia , Adesões Focais/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Tirosina/metabolismo , Quinases da Família src/metabolismo , Animais , Humanos , Camundongos , Fosforilação , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/metabolismo
8.
Physiol Rep ; 4(6)2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27033451

RESUMO

Insulin resistance and diabetes are comorbidities of obesity and affect one in 10 adults in the United States. Despite the high prevalence, the mechanisms of cardiac insulin resistance in obesity are still unclear. We test the hypothesis that the insulin receptor localizes to caveolae and is regulated through binding to caveolin-3 (CAV3). We further test whether haploinsufficiency forCAV3 increases the susceptibility to high-fat-induced insulin resistance. We used in vivo and in vitro studies to determine the effect of palmitate exposure on global insulin resistance, contractile performance of the heart in vivo, glucose uptake in the heart, and on cellular signaling downstream of theIR We show that haploinsufficiency forCAV3 increases susceptibility to palmitate-induced global insulin resistance and causes cardiomyopathy. On the basis of fluorescence energy transfer (FRET) experiments, we show thatCAV3 andIRdirectly interact in cardiomyocytes. Palmitate impairs insulin signaling by a decrease in insulin-stimulated phosphorylation of Akt that corresponds to an 87% decrease in insulin-stimulated glucose uptake inHL-1 cardiomyocytes. Despite loss of Akt phosphorylation and lower glucose uptake, palmitate increased insulin-independent serine phosphorylation ofIRS-1 by 35%. In addition, we found lipid induced downregulation ofCD36, the fatty acid transporter associated with caveolae. This may explain the problem the diabetic heart is facing with the simultaneous impairment of glucose uptake and lipid transport. Thus, these findings suggest that loss ofCAV3 interferes with downstream insulin signaling and lipid uptake, implicatingCAV3 as a regulator of theIRand regulator of lipid uptake in the heart.


Assuntos
Caveolina 3/genética , Dieta Hiperlipídica , Intolerância à Glucose/genética , Heterozigoto , Resistência à Insulina , Miócitos Cardíacos/metabolismo , Ácido Palmítico , Animais , Glicemia/metabolismo , Antígenos CD36/metabolismo , Cavéolas/metabolismo , Caveolina 3/deficiência , Linhagem Celular , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Intolerância à Glucose/induzido quimicamente , Intolerância à Glucose/metabolismo , Intolerância à Glucose/fisiopatologia , Haploinsuficiência , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Receptor de Insulina/metabolismo , Transdução de Sinais , Volume Sistólico , Fatores de Tempo , Transfecção , Disfunção Ventricular/induzido quimicamente , Disfunção Ventricular/genética , Disfunção Ventricular/fisiopatologia
9.
PLoS One ; 11(2): e0148657, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26863209

RESUMO

Serotonergic anorexigens are the primary pharmacologic risk factor associated with pulmonary arterial hypertension (PAH), and the resulting PAH is clinically indistinguishable from the heritable form of disease, associated with BMPR2 mutations. Both BMPR2 mutation and agonists to the serotonin receptor HTR2B have been shown to cause activation of SRC tyrosine kinase; conversely, antagonists to HTR2B inhibit SRC trafficking and downstream function. To test the hypothesis that a HTR2B antagonist can prevent BMRP2 mutation induced PAH by restricting aberrant SRC trafficking and downstream activity, we exposed BMPR2 mutant mice, which spontaneously develop PAH, to a HTR2B antagonist, SB204741, to block the SRC activation caused by BMPR2 mutation. SB204741 prevented the development of PAH in BMPR2 mutant mice, reduced recruitment of inflammatory cells to their lungs, and reduced muscularization of their blood vessels. By atomic force microscopy, we determined that BMPR2 mutant mice normally had a doubling of vessel stiffness, which was substantially normalized by HTR2B inhibition. SB204741 reduced SRC phosphorylation and downstream activity in BMPR2 mutant mice. Gene expression arrays indicate that the primary changes were in cytoskeletal and muscle contractility genes. These results were confirmed by gel contraction assays showing that HTR2B inhibition nearly normalizes the 400% increase in gel contraction normally seen in BMPR2 mutant smooth muscle cells. Heritable PAH results from increased SRC activation, cellular contraction, and vascular resistance, but antagonism of HTR2B prevents SRC phosphorylation, downstream activity, and PAH in BMPR2 mutant mice.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Hipertensão Pulmonar/prevenção & controle , Indóis/farmacologia , Receptor 5-HT2B de Serotonina/genética , Antagonistas da Serotonina/farmacologia , Ureia/análogos & derivados , Quinases da Família src/genética , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/deficiência , Movimento Celular/efeitos dos fármacos , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Contração Muscular/efeitos dos fármacos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutação , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Transporte Proteico , Receptor 5-HT2B de Serotonina/metabolismo , Transdução de Sinais , Ureia/farmacologia , Rigidez Vascular/efeitos dos fármacos , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
10.
Arterioscler Thromb Vasc Biol ; 35(7): 1597-605, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26023079

RESUMO

OBJECTIVE: Calcific aortic valve disease (CAVD) is a significant cardiovascular disorder, and controversy exists as to whether it is primarily a dystrophic or osteogenic process in vivo. In this study, we sought to clarify the mechanism of CAVD by assessing a genetic mutation, Notch1 heterozygosity, which leads to CAVD with 100% penetrance in humans. APPROACH AND RESULTS: Murine immortalized Notch1(+/-) aortic valve interstitial cells (AVICs) were isolated and expanded in vitro. Molecular signaling of wild-type and Notch1(+/-) AVICs were compared to identify changes in pathways that have been linked to CAVD-transforming growth factor-ß1/bone morphogenetic protein, mitogen-activated protein kinase, and phosphoinositide 3-kinase/protein kinase B-and assessed for calcification potential. Additionally, AVIC mechanobiology was studied in a physiologically relevant, dynamic mechanical environment (10% cyclic strain) to investigate differences in responses between the cell types. We found that Notch1(+/-) AVICs resembled a myofibroblast-like phenotype expressing higher amounts of cadherin-11, a known mediator of dystrophic calcification, and decreased Runx2, a known osteogenic marker. We determined that cadherin-11 expression is regulated by Akt activity, and inhibition of Akt phosphorylation significantly reduced cadherin-11 expression. Moreover, in the presence of cyclic strain, Notch1(+/-) AVICs exhibited significantly upregulated phosphorylation of Akt at Ser473 and smooth muscle α-actin expression, indicative of a fully activated myofibroblast. Finally, these Notch1-mediated alterations led to enhanced dystrophic calcific nodule formation. CONCLUSIONS: This study presents novel insights in our understanding of Notch1-mediated CAVD by demonstrating that the mutation leads to AVICs that are fully activated myofibroblasts, resulting in dystrophic, but not osteogenic, calcification.


Assuntos
Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/metabolismo , Valva Aórtica/patologia , Calcinose/genética , Calcinose/metabolismo , Mecanotransdução Celular/genética , Mutação , Miofibroblastos/metabolismo , Receptor Notch1/genética , Animais , Valva Aórtica/metabolismo , Caderinas/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , MAP Quinase Quinase 2/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
11.
Cell Mol Bioeng ; 7(3): 446-459, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33072223

RESUMO

Fibrotic disease is a major cause of morbidity and mortality and is characterized by the transition of resident fibroblast cells into active myofibroblasts, identified by their expression of alpha smooth muscle actin. Myofibroblast differentiation is regulated by growth factor signaling and mechanical signals transduced through integrins, which converge at focal adhesion proteins (Src and FAK) and MAPK signaling, but lead to divergent outcomes. While details are known about individual pathways, little is known about their interactions. To this end, an ODE-based model of this cell signaling network was developed in parallel with in vitro experiments to analyze potential mechanisms of crosstalk and regulation of αSMA production. We found that cells lacking Src or FAK produce significantly less or more αSMA than wild type cells, respectively. Transforming growth factor beta 1 and fibroblast growth factor signal through ERK and MAPK p38 with different dynamic profiles to increase or decrease αSMA expression, respectively. Our model effectively recreated αSMA expression levels across a set of 22 experimental conditions and matched some features of transient phosphorylation of ERK and p38. These results support a potential mechanism for regulation of fibroblast differentiation: αSMA production is promoted by active p38 and Src and opposed by ERK.

12.
Arterioscler Thromb Vasc Biol ; 33(1): 114-20, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23162011

RESUMO

OBJECTIVE: Dystrophic calcific nodule formation in vitro involves differentiation of aortic valve interstitial cells (AVICs) into a myofibroblast phenotype. Interestingly, inhibition of the kinase MAPK Erk kinase (MEK)1/2 prevents calcific nodule formation despite leading to myofibroblast activation of AVICs, indicating the presence of an additional mechanotransductive component required for calcific nodule morphogenesis. In this study, we assess the role of transforming growth factor ß1-induced cadherin-11 expression in calcific nodule formation. METHODS AND RESULTS: As shown previously, porcine AVICs treated with transforming growth factor ß1 before cyclic strain exhibit increased myofibroblast activation and significant calcific nodule formation. In addition to an increase in contractile myofibroblast markers, transforming growth factor ß1-treated AVICs exhibit significantly increased expression of cadherin-11. This expression is inhibited by the addition of U0126, a specific MEK1/2 inhibitor. The role of increased cadherin-11 is revealed through a wound assay, which demonstrates increased intercellular tension in transforming growth factor ß1-treated AVICs possessing cadherin-11. Furthermore, when small interfering RNA is used to knockdown cadherin-11, calcific nodule formation is abrogated, indicating that robust cell-cell connections are necessary in generating tension for calcific nodule morphogenesis. Finally, we demonstrate enrichment of cadherin-11 in human calcified leaflets. CONCLUSIONS: These results indicate the necessity of cadherin-11 for dystrophic calcific nodule formation, which proceeds through an Erk1/2-dependent pathway.


Assuntos
Valva Aórtica/metabolismo , Caderinas/metabolismo , Calcinose/metabolismo , Comunicação Celular , Doenças das Valvas Cardíacas/metabolismo , Miofibroblastos/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Valva Aórtica/efeitos dos fármacos , Valva Aórtica/patologia , Caderinas/genética , Calcinose/patologia , Comunicação Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Doenças das Valvas Cardíacas/patologia , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase 2/metabolismo , Masculino , Pessoa de Meia-Idade , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Morfogênese , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/patologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Transdução de Sinais , Estresse Mecânico , Suínos , Transfecção , Fator de Crescimento Transformador beta1/metabolismo
13.
J Mol Cell Cardiol ; 53(5): 707-14, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22940605

RESUMO

Transforming growth factor-ß1 (TGF-ß1) induces myofibroblast activation of quiescent aortic valve interstitial cells (AVICs), a differentiation process implicated in calcific aortic valve disease (CAVD). The ubiquity of TGF-ß1 signaling makes it difficult to target in a tissue specific manner; however, the serotonin 2B receptor (5-HT(2B)) is highly localized to cardiopulmonary tissues and agonism of this receptor displays pro-fibrotic effects in a TGF-ß1-dependent manner. Therefore, we hypothesized that antagonism of 5-HT(2B) opposes TGF-ß1-induced pathologic differentiation of AVICs and may offer a druggable target to prevent CAVD. To test this hypothesis, we assessed the interaction of 5-HT(2B) antagonism with canonical and non-canonical TGF-ß1 pathways to inhibit TGF-ß1-induced activation of isolated porcine AVICs in vitro. Here we show that AVIC activation and subsequent calcific nodule formation is completely mitigated by 5-HT(2B) antagonism. Interestingly, 5-HT(2B) antagonism does not inhibit canonical TGF-ß1 signaling as identified by Smad3 phosphorylation and activation of a partial plasminogen activator inhibitor-1 promoter (PAI-1, a transcriptional target of Smad3), but prevents non-canonical p38 MAPK phosphorylation. It was initially suspected that 5-HT(2B) antagonism prevents Src tyrosine kinase phosphorylation; however, we found that this is not the case and time-lapse microscopy indicates that 5-HT(2B) antagonism prevents non-canonical TGF-ß1 signaling by physically arresting Src tyrosine kinase. This study demonstrates the necessity of non-canonical TGF-ß1 signaling in leading to pathologic AVIC differentiation. Moreover, we believe that the results of this study suggest 5-HT(2B) antagonism as a novel therapeutic approach for CAVD that merits further investigation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Indóis/farmacologia , Miofibroblastos/fisiologia , Piridinas/farmacologia , Receptor 5-HT2B de Serotonina/metabolismo , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Fator de Crescimento Transformador beta1/fisiologia , Ureia/análogos & derivados , Actinas/genética , Actinas/metabolismo , Animais , Doenças da Aorta/patologia , Valva Aórtica/patologia , Calcinose/patologia , Células Cultivadas , Expressão Gênica , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fosforilação , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Transporte Proteico , Transdução de Sinais , Proteína Smad3/metabolismo , Sus scrofa , Ativação Transcricional , Ureia/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinases da Família src/metabolismo , Quinases da Família src/fisiologia
14.
J Clin Invest ; 122(2): 674-92, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22251701

RESUMO

The morphology of healthy podocyte foot processes is necessary for maintaining the characteristics of the kidney filtration barrier. In most forms of glomerular disease, abnormal filter barrier function results when podocytes undergo foot process spreading and retraction by remodeling their cytoskeletal architecture and intercellular junctions during a process known as effacement. The cell adhesion protein nephrin is necessary for establishing the morphology of the kidney podocyte in development by transducing from the specialized podocyte intercellular junction phosphorylation-mediated signals that regulate cytoskeletal dynamics. The present studies extend our understanding of nephrin function by showing that nephrin activation in cultured podocytes induced actin dynamics necessary for lamellipodial protrusion. This process required a PI3K-, Cas-, and Crk1/2-dependent signaling mechanism distinct from the previously described nephrin-Nck1/2 pathway necessary for assembly and polymerization of actin filaments. Our present findings also support the hypothesis that mechanisms governing lamellipodial protrusion in culture are similar to those used in vivo during foot process effacement in a subset of glomerular diseases. In mice, podocyte-specific deletion of Crk1/2 prevented foot process effacement in one model of podocyte injury and attenuated foot process effacement and associated proteinuria in a delayed fashion in a second model. In humans, focal adhesion kinase and Cas phosphorylation - markers of focal adhesion complex-mediated Crk-dependent signaling - was induced in minimal change disease and membranous nephropathy, but not focal segmental glomerulosclerosis. Together, these observations suggest that activation of a Cas-Crk1/2-dependent complex is necessary for foot process effacement observed in distinct subsets of human glomerular diseases.


Assuntos
Nefropatias/patologia , Glomérulos Renais/patologia , Glomérulos Renais/ultraestrutura , Podócitos/metabolismo , Proteínas Proto-Oncogênicas c-crk/metabolismo , Adolescente , Adulto , Idoso , Animais , Linhagem Celular , Proteína Substrato Associada a Crk/genética , Proteína Substrato Associada a Crk/metabolismo , Feminino , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Nefropatias/metabolismo , Glomérulos Renais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/metabolismo , Podócitos/ultraestrutura , Proteínas Proto-Oncogênicas c-crk/genética , Pseudópodes/metabolismo , Pseudópodes/ultraestrutura , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , Adulto Jovem
15.
PLoS One ; 5(10): e13412, 2010 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-20976150

RESUMO

The docking protein p130Cas is a prominent Src substrate found in focal adhesions (FAs) and is implicated in regulating critical aspects of cell motility including FA disassembly and protrusion of the leading edge plasma membrane. To better understand how p130Cas acts to promote these events we examined requirements for established p130Cas signaling motifs including the SH3-binding site of the Src binding domain (SBD) and the tyrosine phosphorylation sites within the substrate domain (SD). Expression of wild type p130Cas in Cas -/- mouse embryo fibroblasts resulted in enhanced cell migration associated with increased leading-edge actin flux, increased rates of FA assembly/disassembly, and uninterrupted FA turnover. Variants lacking either the SD phosphorylation sites or the SBD SH3-binding motif were able to partially restore the migration response, while only a variant lacking both signaling functions was fully defective. Notably, the migration defects associated with p130Cas signaling-deficient variants correlated with longer FA lifetimes resulting from aborted FA disassembly attempts. However the SD mutational variant was fully defective in increasing actin assembly at the protruding leading edge and FA assembly/disassembly rates, indicating that SD phosphorylation is the sole p130Cas signaling function in regulating these processes. Our results provide the first quantitative evidence supporting roles for p130Cas SD tyrosine phosphorylation in promoting both leading edge actin flux and FA turnover during cell migration, while further revealing that the p130Cas SBD has a function in cell migration and sustained FA disassembly that is distinct from its known role of promoting SD tyrosine phosphorylation.


Assuntos
Movimento Celular , Proteína Substrato Associada a Crk/fisiologia , Adesões Focais , Quinases da Família src/metabolismo , Animais , Proteína Substrato Associada a Crk/genética , Proteína Substrato Associada a Crk/metabolismo , Camundongos , Camundongos Knockout , Fosforilação , Transdução de Sinais , Especificidade por Substrato , Tirosina/metabolismo
16.
J Biol Chem ; 285(27): 20769-79, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20430882

RESUMO

The docking protein p130Cas is a major Src substrate involved in integrin signaling and mechanotransduction. Tyrosine phosphorylation of p130Cas in focal adhesions (FAs) has been linked to enhanced cell migration, invasion, proliferation, and survival. However, the mechanism of p130Cas targeting to FAs is uncertain, and dynamic aspects of its localization have not been explored. Using live cell microscopy, we show that fluorophore-tagged p130Cas is a component of FAs throughout the FA assembly and disassembly stages, although it resides transiently in FAs with a high mobile fraction. Deletion of either the N-terminal Src homology 3 (SH3) domain or the Cas-family C-terminal homology (CCH) domain significantly impaired p130Cas FA localization, and deletion of both domains resulted in full exclusion. Focal adhesion kinase was implicated in the FA targeting function of the p130Cas SH3 domain. Consistent with their roles in FA targeting, both the SH3 and CCH domains were found necessary for p130Cas to fully undergo tyrosine phosphorylation and promote cell migration. By revealing the capacity of p130Cas to function in FAs throughout their lifetime, clarifying FA targeting mechanism, and demonstrating the functional importance of the highly conserved CCH domain, our results advance the understanding of an important aspect of integrin signaling.


Assuntos
Proteína Substrato Associada a Crk/metabolismo , Adesões Focais/metabolismo , Animais , Anticorpos Monoclonais , Movimento Celular , Proteína Substrato Associada a Crk/análise , Proteína Substrato Associada a Crk/genética , Fibroblastos/metabolismo , Genes Reporter , Variação Genética , Immunoblotting , Proteínas Luminescentes/genética , Camundongos/embriologia , Paxilina/análise , Paxilina/genética , Fosforilação , Plasmídeos , Reação em Cadeia da Polimerase , Especificidade por Substrato , Cicatrização/fisiologia , Quinases da Família src/metabolismo
17.
Cell Motil Cytoskeleton ; 65(1): 25-39, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17922492

RESUMO

Formation of a complex between the tyrosine kinases FAK and Src is a key integrin-mediated signaling event implicated in cell motility, survival, and proliferation. Past studies indicate that FAK functions in the complex primarily as a "scaffold," acting to recruit and activate Src within cell/matrix adhesions. To study the cellular impact of FAK-associated Src signaling we developed a novel gain-of-function approach that involves expressing a chimeric protein with the FAK kinase domain replaced by the Src kinase domain. This FAK/Src chimera is subject to adhesion-dependent activation and promotes tyrosine phosphorylation of p130Cas and paxillin to higher steady-state levels than is achieved by wild-type FAK. When expressed in FAK -/- mouse embryo fibroblasts, the FAK/Src chimera resulted in a striking cellular phenotype characterized by unusual large peripheral adhesions, enhanced adhesive strength, and greatly reduced motility. Live cell imaging of the chimera-expressing FAK -/- cells provided evidence that the large peripheral adhesions are associated with a dynamic actin assembly process that is sensitive to a Src-selective inhibitor. These findings suggest that FAK-associated Src kinase activity has the capacity to promote adhesion integrity and actin assembly.


Assuntos
Actinas/metabolismo , Quinase 1 de Adesão Focal/fisiologia , Adesões Focais/enzimologia , Proteínas Proto-Oncogênicas pp60(c-src)/fisiologia , Proteínas Recombinantes de Fusão/fisiologia , Animais , Células Cultivadas , Quinase 1 de Adesão Focal/deficiência , Quinase 1 de Adesão Focal/genética , Adesões Focais/genética , Genes src/fisiologia , Camundongos , Fenótipo , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Proteínas Recombinantes de Fusão/genética , Transdução de Sinais/genética
18.
Cell Signal ; 16(5): 621-9, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-14751547

RESUMO

Crk-associated substrate (CAS) is a tyrosine kinase substrate implicated in integrin control of cell behavior. Phosphorylation, by Src family kinases, of multiple tyrosine residues in the CAS substrate domain (SD) is a major integrin signaling event that promotes cell motility. In this study, novel phosphospecific antibodies directed against CAS SD phosphotyrosine sites ("pCAS" antibodies) were characterized and employed to investigate the cellular regulation and localization of CAS SD tyrosine phosphorylation. An analysis of CAS and focal adhesion kinase (FAK) variants expressed in CAS- and FAK-deficient cell lines, respectively, indicated that CAS SD tyrosine phosphorylation is substantially achieved by Src family kinases brought into association with CAS through two distinct mechanisms: direct binding to the CAS Src-binding domain and indirect association through a FAK bridge. Cell immunostaining with pCAS antibodies revealed that CAS SD tyrosine phosphorylation occurs exclusively at sites of integrin adhesion including both nascent focal complexes formed at the edges of extending lamellipodia as well as mature focal adhesions underlying the cell body. These findings further document a role for FAK as an important upstream regulator of CAS SD tyrosine phosphorylation and implicate CAS-mediated signaling events in promoting membrane protrusion/lamellipodium extension during cell motility.


Assuntos
Proteína de Suscetibilidade a Apoptose Celular/metabolismo , Tirosina/metabolismo , Quinases da Família src/metabolismo , Animais , Anticorpos/imunologia , Proteína de Suscetibilidade a Apoptose Celular/imunologia , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Adesões Focais/metabolismo , Adesões Focais/ultraestrutura , Camundongos , Fosforilação , Fosfotirosina/imunologia , Fosfotirosina/metabolismo , Estrutura Terciária de Proteína/fisiologia , Proteínas Tirosina Quinases/metabolismo , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais/imunologia , Transdução de Sinais/fisiologia , Especificidade por Substrato , Vinculina/imunologia , Vinculina/metabolismo
19.
Front Biosci ; 8: d982-96, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12700132

RESUMO

Focal adhesion kinase (FAK) was first described in 1992 as a novel nonreceptor protein-tyrosine kinase localized prominently within focal adhesions, suggesting a signaling role in regulating cell behavior resulting from integrin interaction with the extracellular matrix. Subsequent studies over the past decade have established functional roles for FAK as a positive regulator of both cell motility and cell survival, while providing considerable insight into signaling mechanisms involved. FAK signaling results from its ability to become highly phosphorylated in response to integrin-mediated adhesion on Tyr-397, permitting interactions with a number of different signaling effectors containing Src homology 2 (SH2) domains. Src-family kinases recruited to the Tyr-397 site phosphorylate two FAK-interacting proteins, Crk-associated substrate (CAS) and paxillin, which results ultimately in regulation of Rho-family GTPases contributing to cell motility. CAS phosphorylation, as well as phosphatidylinositol 3-kinase (PI3K) activation resulting from its binding to the FAK Tyr-397 site, have been implicated as downstream FAK signaling events that confer a resistance to apoptosis. This article reviews these and other aspects of FAK signaling and function.


Assuntos
Movimento Celular/fisiologia , Proteínas Tirosina Quinases/fisiologia , Transdução de Sinais/fisiologia , Animais , Sobrevivência Celular/fisiologia , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...