Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Exp Cell Res ; 439(1): 114059, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705228

RESUMO

Filopodia are thin, actin-rich projection from the plasma membrane that promote cancer cell invasion and migration. Sex-determining region Y-related high-mobility group-box 4 (SOX4) is a crucial transcription factor that plays a role in the development and metastasis of colorectal cancer (CRC). However, the involvement of SOX4 in cytoskeleton remodeling in CRC remains unknown. For the first time, we demonstrate that SOX4 is a potent regulator of filopodia formation in CRC cells. Overexpression of SOX4 protein enhances both migration and invasion ability of HCT116, and CACO2 cells, which is relevant to the metastasis. Furthermore, through phalloidin staining, cytoskeleton re-assembly was observed in SOX4-modified cell lines. Enhanced expression of SOX4 increased the number and length of filopodia on cell surface. In contrast, silencing SOX4 in SW620 cells with higher endogenous expression of SOX4, impeded the filopodia formation. Moreover, SOX4 was found to be positively regulating the expression of central regulators of actin cytoskeleton - N-Wiskott-Aldrich syndrome protein (N-WASP); WAVE2; Actin related proteins, ARP2 and ARP3. Inhibiting the N-WASP/ARP2/3 pathway diminishes the filopodia formation and the migration of CRC cells. These results indicate the crucial role of SOX4 in the regulation of filopodia formation mediated by N-WASP/ARP2/3 pathway in CRC cells.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Movimento Celular , Neoplasias Colorretais , Citoesqueleto , Pseudópodes , Fatores de Transcrição SOXC , Proteína Neuronal da Síndrome de Wiskott-Aldrich , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética , Movimento Celular/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética , Citoesqueleto/metabolismo , Pseudópodes/metabolismo , Células CACO-2 , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Células HCT116 , Citoesqueleto de Actina/metabolismo
2.
Dig Dis Sci ; 69(3): 835-850, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38240850

RESUMO

BACKGROUND: Increased SOX4 (SRY-related HMG-box) activity aids cellular transformation and metastasis. However, its specific functions and downstream targets remain to be completely elusive in colorectal cancer (CRC). AIMS: To investigate the role of SOX4 in CRC progression and the underlying mechanism. METHODS: In the current study, online available datasets of CRC patients were explored to check the expression status of SOX4. To investigate the further functions, SOX4 was overexpressed and knocked down in CRC cells. Colony formation assay, flowcytometry analysis, and MTT assay were used to check for proliferation and apoptosis. Acridine orange staining was done to check the role of SOX4 in autophagy induction. Furthermore, western blot, qRT-PCR, and bioinformatic analysis was done to elucidate the downstream molecular mechanism of SOX4. RESULTS: GEPIA database showed enhanced expression of SOX4 mRNA in CRC tumor, and the human protein atlas (HPA) showed strong staining of SOX4 protein in tumor when compared to the normal tissue. Ectopic expression of SOX4 enhanced colony formation ability as well as rescued cells from apoptosis. SOX4 overexpressed cells showed the formation of acidic vesicular organelles (AVOs) which indicated autophagy. Further results revealed the activation of p-AKT/MAPK molecules upon overexpression of SOX4. SOX4 expression was found to be positively correlated with histone deacetylase 2 (HDAC2). Knockdown of SOX4 or HDAC2 inhibition induced apoptosis, revealed by decrease in BCL2 and increase in BAX expression, and inactivated the p-AKT/MAPK signaling. CONCLUSION: The study uncovers that SOX4/HDAC2 axis improves cell survivability and reduces apoptosis via activation of the p-AKT/MAPK pathway.


Assuntos
Neoplasias Colorretais , Histona Desacetilase 2 , Proteínas Proto-Oncogênicas c-akt , Fatores de Transcrição SOXC , Humanos , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo
3.
Mutat Res Rev Mutat Res ; 790: 108445, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36371022

RESUMO

Colorectal cancer (CRC) arises by a continuous process of genetic diversification and clonal evolution. Multiple genes and pathways have a role in tumor initiation and progression. The gradual accumulation of genetic and epigenetic processes leads to the establishment of adenoma and cancer. The important 'driver' mutations in tumor suppressor genes (such as TP53, APC, and SMAD4) and oncogenes (such as KRAS, NRAS, MET, and PIK3CA) confer selective growth advantages and cause CRC advancement. Clonal evolution induced by therapeutic pressure, as well as intra-tumoral heterogeneity, has been a great challenge in the treatment of metastatic CRC. Tumors often develop resistance to treatments as a result of intra-tumor heterogeneity, clonal evolution, and selection. Hence, the development of a multidrug personalized approach should be prioritized to pave the way for therapeutics repurposing and combination therapy to arrest tumor progression. This review summarizes how selective drug pressure can impact tumor evolution, resulting in the formation of polyclonal resistance mechanisms, ultimately promoting cancer progression. Current strategies for targeting clonal evolution are described. By understanding sources and consequences of tumor heterogeneity, customized and effective treatment plans to combat drug resistance may be devised.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Mutação , Recidiva Local de Neoplasia/genética , Evolução Clonal/genética , Oncogenes
4.
Nanomedicine (Lond) ; 17(11): 753-764, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35575008

RESUMO

Aim: To evaluate the efficacy of novel methotrexate-loaded nanoparticles (MTX-NPs) in vitro and in vivo in the treatment of breast cancer. Materials & methods: MTX-NPs were tested for cellular uptake, cell viability, cell cycle, cellular wound migration and changes in tumor volume using characterized NPs. Results: The solid lipid NPs (SLNPs) showed strong cellular uptake, increased apoptosis, controlled cytotoxicity at lower IC50 of methotrexate and a sizable reduction in tumor burden. Conclusion: MTX-NP oral formulation can be a promising candidate in breast cancer treatment with improved cellular uptake and in vivo efficacy.


Assuntos
Neoplasias da Mama , Nanopartículas , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Sobrevivência Celular , Feminino , Humanos , Lipossomos , Metotrexato/farmacologia , Camundongos
5.
Front Bioeng Biotechnol ; 9: 788527, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976976

RESUMO

Chemotherapy side effects, medication resistance, and tumor metastasis impede the advancement of cancer treatments, resulting in a poor prognosis for cancer patients. In the last decade, nanoparticles (NPs) have emerged as a promising drug delivery system. Swertia chirayita has long been used as a treatment option to treat a variety of ailments. Zinc oxide nanoparticles (ZnO-NPs) were synthesized from ethanolic and methanolic extract of S. chirayita leaves. ZnO-NPs were characterized using UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron Microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD). Its anti-cancer activities were analyzed using cytotoxicity assays [MTT assay and acridine orange (AO) staining] and quantitative real-time PCR (qRT-PCR) using colorectal cancer (CRC) cells (HCT-116 and Caco-2) and control cells (HEK-293). The ZnO-NPs synthesized from the ethanolic extract of S. chirayita have an average size of 24.67 nm, whereas those from methanolic extract have an average size of 22.95 nm with a spherical shape. MTT assay showed NPs' cytotoxic potential on cancer cells (HCT-116 and Caco-2) when compared to control cells (HEK-293). The IC50 values of ethanolic and methanolic extract ZnO-NPs for HCT-116, Caco-2, and HEK-293 were 34.356 ± 2.71 and 32.856 ± 2.99 µg/ml, 52.15 ± 8.23 and 63.1 ± 12.09 µg/ml, and 582.84 ± 5.26 and 615.35 ± 4.74 µg/ml, respectively. Acridine orange staining confirmed the ability of ZnO-NPs to induce apoptosis. qRT-PCR analysis revealed significantly enhanced expression of E-cadherin whereas a reduced expression of vimentin and CDK-1. Altogether, these results suggested anti-cancer properties of synthesized ZnO-NPs in CRC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...