Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 119: 104523, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33940538

RESUMO

Implant materials must mimic natural human bones with biocompatibility, osteoconductivity and mechanical stability to successfully replace damaged or disease-affected bones. Synthetic hydroxyapatite was incorporated with bioglass to mimic natural bones for replacing conventional implant materials which has led to certain toxicity issues. Hence, hydroxyapatite (HAp) are recently gaining applicational importance as they are resembling the structure and function of natural bones. Further, nanosized HAp is under extensive research to utilize them as a potential replacement for traditional implants with several exclusive properties. However, chemical synthesis of nano-HAp exhibited toxicity towards normal and healthy cells. Recently, biogenic Hap synthesis from marine and animal sources are introduced as a next generation implant materials, due to their mineral ion and significant porous architecture mediated biocompatibility and bone bonding ability, compared to synthetic HAp. Thus, the purpose of the paper is to give a bird's eye view into the conventional approaches for fabricating nano-HAp, its limitations and the significance of using marine organisms and marine food wastes as a precursor for biogenic nano-Hap production. Moreover, in vivo and in vitro analyses of marine source derived nano-HAp and their potential biomedical applications were also discussed.


Assuntos
Regeneração Óssea , Durapatita , Animais , Osso e Ossos , Humanos , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...