Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 271: 129415, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33460901

RESUMO

Elimination of heavy metals from wastewater has been a significant process to improve the aquatic source's quality. Various materials act as very effective adsorbents to remove heavy metals, which cause toxicity to plants and all other living organisms. Thus, the present work focuses on removing heavy metals chromium (Cr) and copper (Cu) ions containing wastewater using biodegradable and cost-effective chitosan-based hydrogel composite. The composite was prepared via chemical cross-linking of radical chitosan with polyacrylamide and N,N'-Methylene bisacrylamide and blended with orange peel. The synthesis of the adsorbent has been confirmed by using Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscopy - Energy dispersive X-ray analysis (SEM-EDAX) and X-ray diffraction (XRD) studies. The adsorption power of the composite of metal ions at different time, pH, adsorbent dosages, different metal ion concentrations were analyzed by using Atomic Absorption Spectroscopy (AAS). The results concluded that the optimum pH for Cr(VI) and Cu (II) were 4 and 5, contact time: 360 min, adsorbent dosage: 4 g, and initial metal ion concentration: 100 mg/L for each metal ions. The adsorption isotherm models follow the Freundlich model and pseudo-second-order kinetics. From the results, the adsorption capacity was observed to be 80.43% for Cr(VI) and 82.47% for Cu(II) ions, respectively.


Assuntos
Quitosana , Citrus sinensis , Poluentes Químicos da Água , Adsorção , Cromo/análise , Hidrogéis , Concentração de Íons de Hidrogênio , Íons , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Águas Residuárias , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...