Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Struct Funct ; 227(6): 2087-2102, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35524072

RESUMO

In the past decades, there has been a growing scientific interest in characterizing neural correlates of meditation training. Nonetheless, the mechanisms underlying meditation remain elusive. In the present work, we investigated meditation-related changes in functional dynamics and structural connectivity (SC). For this purpose, we scanned experienced meditators and control (naive) subjects using magnetic resonance imaging (MRI) to acquire structural and functional data during two conditions, resting-state and meditation (focused attention on breathing). In this way, we aimed to characterize and distinguish both short-term and long-term modifications in the brain's structure and function. First, to analyze the fMRI data, we calculated whole-brain effective connectivity (EC) estimates, relying on a dynamical network model to replicate BOLD signals' spatio-temporal structure, akin to functional connectivity (FC) with lagged correlations. We compared the estimated EC, FC, and SC links as features to train classifiers to predict behavioral conditions and group identity. Then, we performed a network-based analysis of anatomical connectivity. We demonstrated through a machine-learning approach that EC features were more informative than FC and SC solely. We showed that the most informative EC links that discriminated between meditators and controls involved several large-scale networks mainly within the left hemisphere. Moreover, we found that differences in the functional domain were reflected to a smaller extent in changes at the anatomical level as well. The network-based analysis of anatomical pathways revealed strengthened connectivity for meditators compared to controls between four areas in the left hemisphere belonging to the somatomotor, dorsal attention, subcortical and visual networks. Overall, the results of our whole-brain model-based approach revealed a mechanism underlying meditation by providing causal relationships at the structure-function level.


Assuntos
Meditação , Encéfalo , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Meditação/métodos , Rede Nervosa/diagnóstico por imagem
2.
Front Hum Neurosci ; 15: 560657, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539361

RESUMO

In cognitive science, Theory of Mind (ToM) is the mental faculty of assessing intentions and beliefs of others and requires, in part, to distinguish incoming sensorimotor (SM) signals and, accordingly, attribute these to either the self-model, the model of the other, or one pertaining to the external world, including inanimate objects. To gain an understanding of this mechanism, we perform a computational analysis of SM interactions in a dual-arm robotic setup. Our main contribution is that, under the common fate principle, a correlation analysis of the velocities of visual pivots is shown to be sufficient to characterize "the self" (including proximo-distal arm-joint dependencies) and to assess motor to sensory influences, and "the other" by computing clusters in the correlation dependency graph. A correlational analysis, however, is not sufficient to assess the non-symmetric/directed dependencies required to infer autonomy, the ability of entities to move by themselves. We subsequently validate 3 measures that can potentially quantify a metric for autonomy: Granger causality (GC), transfer entropy (TE), as well as a novel "Acceleration Transfer" (AT) measure, which is an instantaneous measure that computes the estimated instantaneous transfer of acceleration between visual features, from which one can compute a directed SM graph. Subsequently, autonomy is characterized by the sink nodes in this directed graph. This study results show that although TE can capture the directional dependencies, a rectified subtraction operation denoted, in this study, as AT is both sufficient and computationally cheaper.

3.
Front Hum Neurosci ; 14: 559793, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33132875

RESUMO

This paper addresses how impairments in prediction in young adults with autism spectrum disorder (ASD) relate to their behavior during collaboration. To assess it, we developed a task where participants play in collaboration with a synthetic agent to maximize their score. The agent's behavior changes during the different phases of the game, requiring participants to model the agent's sensorimotor contingencies to play collaboratively. Our results (n = 30, 15 per group) show differences between autistic and neurotypical individuals in their behavioral adaptation to the other partner. Contrarily, there are no differences in the self-reports of that collaboration.

4.
PLoS One ; 15(6): e0234434, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32569266

RESUMO

What is the role of real-time control and learning in the formation of social conventions? To answer this question, we propose a computational model that matches human behavioral data in a social decision-making game that was analyzed both in discrete-time and continuous-time setups. Furthermore, unlike previous approaches, our model takes into account the role of sensorimotor control loops in embodied decision-making scenarios. For this purpose, we introduce the Control-based Reinforcement Learning (CRL) model. CRL is grounded in the Distributed Adaptive Control (DAC) theory of mind and brain, where low-level sensorimotor control is modulated through perceptual and behavioral learning in a layered structure. CRL follows these principles by implementing a feedback control loop handling the agent's reactive behaviors (pre-wired reflexes), along with an Adaptive Layer that uses reinforcement learning to maximize long-term reward. We test our model in a multi-agent game-theoretic task in which coordination must be achieved to find an optimal solution. We show that CRL is able to reach human-level performance on standard game-theoretic metrics such as efficiency in acquiring rewards and fairness in reward distribution.


Assuntos
Tomada de Decisões/fisiologia , Modelos Psicológicos , Reforço Social , Comportamento Social , Normas Sociais , Simulação por Computador , Teoria dos Jogos , Humanos , Córtex Sensório-Motor/fisiologia
5.
R Soc Open Sci ; 5(12): 181286, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30662738

RESUMO

The emergence of syntax during childhood is a remarkable example of how complex correlations unfold in nonlinear ways through development. In particular, rapid transitions seem to occur as children reach the age of two, which seems to separate a two-word, tree-like network of syntactic relations among words from the scale-free graphs associated with the adult, complex grammar. Here, we explore the evolution of syntax networks through language acquisition using the chromatic number, which captures the transition and provides a natural link to standard theories on syntactic structures. The data analysis is compared to a null model of network growth dynamics which is shown to display non-trivial and sensible differences. At a more general level, we observe that the chromatic classes define independent regions of the graph, and thus, can be interpreted as the footprints of incompatibility relations, somewhat as opposed to modularity considerations.

6.
Proc Biol Sci ; 284(1869)2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29263282

RESUMO

Humans display anticipatory motor responses to minimize the adverse effects of predictable perturbations. A widely accepted explanation for this behaviour relies on the notion of an inverse model that, learning from motor errors, anticipates corrective responses. Here, we propose and validate the alternative hypothesis that anticipatory control can be realized through a cascade of purely sensory predictions that drive the motor system, reflecting the causal sequence of the perceptual events preceding the error. We compare both hypotheses in a simulated anticipatory postural adjustment task. We observe that adaptation in the sensory domain, but not in the motor one, supports the robust and generalizable anticipatory control characteristic of biological systems. Our proposal unites the neurobiology of the cerebellum with the theory of active inference and provides a concrete implementation of its core tenets with great relevance both to our understanding of biological control systems and, possibly, to their emulation in complex artefacts.


Assuntos
Antecipação Psicológica , Movimento , Postura , Adaptação Psicológica , Humanos , Modelos Psicológicos
7.
Front Behav Neurosci ; 11: 143, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824391

RESUMO

We designed a novel experiment to investigate the modulation of human recognition memory by environmental context. Human participants were asked to navigate through a four-arm Virtual Reality (VR) maze in order to find and memorize discrete items presented at specific locations in the environment. They were later on tested on their ability to recognize items as previously presented or new. By manipulating the spatial position of half of the studied items during the testing phase of our experiment, we could assess differences in performance related to the congruency of environmental information at encoding and retrieval. Our results revealed that spatial context had a significant effect on the quality of memory. In particular, we found that recognition performance was significantly better in trials in which contextual information was congruent as opposed to those in which it was different. Our results are in line with previous studies that have reported spatial-context effects in recognition memory, further characterizing their magnitude under ecologically valid experimental conditions.

8.
Neural Netw ; 72: 88-108, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26585942

RESUMO

Animals successfully forage within new environments by learning, simulating and adapting to their surroundings. The functions behind such goal-oriented behavior can be decomposed into 5 top-level objectives: 'how', 'why', 'what', 'where', 'when' (H4W). The paradigms of classical and operant conditioning describe some of the behavioral aspects found in foraging. However, it remains unclear how the organization of their underlying neural principles account for these complex behaviors. We address this problem from the perspective of the Distributed Adaptive Control theory of mind and brain (DAC) that interprets these two paradigms as expressing properties of core functional subsystems of a layered architecture. In particular, we propose DAC-X, a novel cognitive architecture that unifies the theoretical principles of DAC with biologically constrained computational models of several areas of the mammalian brain. DAC-X supports complex foraging strategies through the progressive acquisition, retention and expression of task-dependent information and associated shaping of action, from exploration to goal-oriented deliberation. We benchmark DAC-X using a robot-based hoarding task including the main perceptual and cognitive aspects of animal foraging. We show that efficient goal-oriented behavior results from the interaction of parallel learning mechanisms accounting for motor adaptation, spatial encoding and decision-making. Together, our results suggest that the H4W problem can be solved by DAC-X building on the insights from the study of classical and operant conditioning. Finally, we discuss the advantages and limitations of the proposed biologically constrained and embodied approach towards the study of cognition and the relation of DAC-X to other cognitive architectures.


Assuntos
Adaptação Psicológica/fisiologia , Comportamento Apetitivo/fisiologia , Comportamento Animal/fisiologia , Condicionamento Operante/fisiologia , Modelos Biológicos , Animais , Encéfalo/fisiologia , Cognição/fisiologia , Simulação por Computador , Tomada de Decisões/fisiologia , Aprendizagem/fisiologia , Resolução de Problemas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...