Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(26): 7911-7918, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38889449

RESUMO

Manipulating spin transport enhances the functionality of electronic devices, allowing them to surpass physical constraints related to speed and power. For this reason, the use of van der Waals multiferroics at the interface of heterostructures offers promising prospects for developing high-performance devices, enabling the electrical control of spin information. Our work focuses primarily on a mechanism for multiferroicity in two-dimensional van der Waals materials that stems from an interplay between antiferromagnetism and the breaking of inversion symmetry in certain bilayers. We provide evidence for spin-electrical couplings that include manipulating van der Waals multiferroic edges via external voltages and the subsequent control of spin transport including for fully multiferroic spin field-effect transistors.

2.
Phys Rev Lett ; 131(22): 226801, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101376

RESUMO

We provide a model capable of accounting for the multiferroicity in certain materials. The model's base is on free electrons and spin moments coupled within nonrelativistic quantum mechanics. The synergistic interplay between the magnetic and electric degrees of freedom that turns into the multiferroic phenomena occurs at a profound quantum mechanical level, conjured by Berry's phases and the quantum theory of polarization. Our results highlight the geometrical nature of the multiferroic order parameter that naturally leads to magnetoelectric domain walls, with promising technological potential.

3.
Nanomaterials (Basel) ; 13(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446487

RESUMO

In this study, we investigate the magnetic properties of interconnected permalloy nanowire networks using micromagnetic simulations. The effects of interconnectivity on the hysteresis curves, coercivity, and remanence of the nanowire networks are analyzed. Our results reveal intriguing characteristics of the hysteresis curves, including nonmonotonic behaviors of coercivity as a function of the position of horizontal nanowires relative to vertical nanowires. By introducing horizontal nanowires at specific positions, the coercivity of the nanowire networks can be enhanced without altering the material composition. The normalized remanence remains relatively constant regardless of the position of the horizontal wires, although it is lower in the interconnected nanowire arrays compared to nonconnected arrays. These findings provide valuable insights into the design and optimization of nanowire networks for applications requiring tailored magnetic properties.

4.
Sci Rep ; 11(1): 20811, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675243

RESUMO

A long piece of magnetic material shaped as a central cylindrical wire (diameter [Formula: see text] nm) with two wider coaxial cylindrical portions (diameter [Formula: see text] nm and thickness [Formula: see text] nm) defines a bimodulated nanowire. Micromagnetism is invoked to study the equilibrium energy of the system under the variations of the positions of the modulations along the wire. The system can be thought of as composed of five independent elements (3 segments and 2 modulations) leading to [Formula: see text] possible different magnetic configurations, which will be later simplified to 4. We investigate the stability of the configurations depending on the positions of the modulations. The relative chirality of the modulations has negligible contributions to the energy and they have no effect on the stability of the stored configuration. However, the modulations are extremely important in pinning the domain walls that lead to consider each segment as independent from the rest. A phase diagram reporting the stability of the inscribed magnetic configurations is produced. The stability of the system was then tested under the action of external magnetic fields and it was found that more than 50 mT are necessary to alter the inscribed information. The main purpose of this paper is to find whether a prototype like this can be complemented to be used as a magnetic key or to store information in the form of firmware. Present results indicate that both possibilities are feasible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...