Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Physiol Biochem ; : 1-18, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798949

RESUMO

Objective: This manuscript aimed to provide a comprehensive overview of the physiological, molecular, and cellular mechanisms triggered by reactive astrocytes (RA) in the context of spinal cord injury (SCI), with a particular focus on cases involving hyperglycaemia.Methods: The compilation of articles related to astrocyte responses in neuropathological conditions, with a specific emphasis on those related to SCI and hyperglycaemia, was conducted by searching through databases including Science Direct, Web of Science, and PubMed.Results and Conclusions: This article explores the dual role of astrocytes in both neurophysiological and neurodegenerative conditions within the central nervous system (CNS). In the aftermath of SCI and hyperglycaemia, astrocytes undergo a transformation into RA, adopting a distinct phenotype. While there are currently no approved therapies for SCI, various therapeutic strategies have been proposed to alleviate the detrimental effects of RAs following SCI and hyperglycemia. These strategies show promising potential in the treatment of SCI and its likely comorbidities.

2.
Neuroscience ; 315: 136-49, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26701292

RESUMO

Methylprednisolone sodium succinate (MPSS) has been proposed as a first-line treatment for acute spinal cord injury (SCI). Its clinical use remains, however, controversial because of the modest benefits and numerous side-effects. We investigated if MPSS could protect spinal neurons and glia using an in vitro model of the rat spinal cord that enables recording reflexes, fictive locomotion and morphological analysis of damage. With this model, a differential lesion affecting mainly either neurons or glia can be produced via kainate-evoked excitotoxicity or application of a pathological medium (lacking O2 and glucose), respectively. MPSS (6-10 µM) applied for 24 h after 1-h pathological medium protected astrocytes and oligodendrocytes especially in the ventrolateral white matter. This effect was accompanied by the return of slow, alternating oscillations (elicited by NMDA and 5-hydroxytryptamine (5-HT)) reminiscent of a sluggish fictive locomotor pattern. MPSS was, however, unable to reverse even a moderate neuronal loss and the concomitant suppression of fictive locomotion evoked by kainate (0.1 mM; 1 h). These results suggest that MPSS could, at least in part, contrast damage to spinal glia induced by a dysmetabolic state (associated to oxygen and glucose deprivation) and facilitate reactivation of spinal networks. Conversely, when even a minority of neurons was damaged by excitotoxicity, MPSS did not protect them nor did it restore network function in the current experimental model.


Assuntos
Metilprednisolona/farmacologia , Fármacos Neuroprotetores/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Animais Recém-Nascidos , Imuno-Histoquímica , Ácido Caínico , Vértebras Lombares , Potenciais da Membrana/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , N-Metilaspartato/administração & dosagem , N-Metilaspartato/metabolismo , Vias Neurais/efeitos dos fármacos , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/fisiologia , Neurotransmissores/administração & dosagem , Ratos Wistar , Serotonina/administração & dosagem , Serotonina/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Substância Branca/efeitos dos fármacos , Substância Branca/patologia , Substância Branca/fisiopatologia
3.
Neuroscience ; 222: 356-65, 2012 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-22771622

RESUMO

Excitotoxicity triggered by over-stimulation of glutamatergic receptors is considered to be a major component of damage following acute spinal cord injury (SCI). Using an in vitro model of neonatal rat SCI caused by transient application (1h) of the glutamate agonist kainate (0.05-0.1 mM) to produce limited excitotoxicity, the present study investigated whether riluzole, a drug inhibiting glutamate release and neuronal excitability, could prevent neuronal loss and protect locomotor patterns 24 h later. Immunohistochemical analysis of neuronal and motoneuronal populations was associated with recording of fictive locomotion induced by neurochemicals or dorsal root stimuli. Riluzole (5 µM; 24 h application) per se exerted strong and persistent neurodepressant effects on network synaptic transmission from which recovery was very slow. When continuously applied after kainate, riluzole partially reduced the number of pyknotic cells in the gray matter, although motoneurons remained vulnerable and no fictive locomotion was present. In further experiments, riluzole per se was applied for 3 h (expected to coincide with kainate peak excitotoxicity) and washed out for 24 h with full return of fictive locomotion. When this protocol was implemented after kainate, no efficient histological or functional recovery was observed. No additional benefit was detected even when riluzole was co-applied with kainate and continued for the following 3 h. These results show that modest neuronal losses evoked by excitotoxicity have a severe impact on locomotor network function, and that they cannot be satisfactorily blocked by strong neurodepression with riluzole, suggesting the need for more effective pharmacological approaches.


Assuntos
Animais Recém-Nascidos/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Locomoção/fisiologia , Rede Nervosa/efeitos dos fármacos , Fármacos Neuroprotetores , Riluzol/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Contagem de Células , Sobrevivência Celular/efeitos dos fármacos , Estimulação Elétrica , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios , Imunofluorescência , Imuno-Histoquímica , Ácido Caínico , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Ratos , Ratos Wistar , Traumatismos da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/patologia
4.
Neuroscience ; 163(1): 180-9, 2009 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-19524025

RESUMO

Sympathetic preganglionic neurons (SPN) coexpress the acetylcholine (ACh)-synthesizing enzyme choline acetyltransferase and different peptides in their cell bodies, but can express them independently in separate varicosities, indicating that SPN segregate transmitters to different synapses. Consequently, there are populations of preganglionic varicosities (peptidergic and noncholinergic) that store peptides but not ACh. We studied in the cell bodies and axon processes of the rat SPN the expression and the proportional coexpression of the vesicular ACh transporter-like immunoreactivity (VAChT), a specific marker of cholinergic synaptic vesicles or ChAT-like immunoreactivity (ChAT), and the peptide methionine enkephalin-like immunoreactivity (mENK), and confirmed the presence of a population of SPN peptidergic, noncholinergic varicosities. We characterized these varicosities by exploring the occurrence of synaptophysin-like immunoreactivity (Syn), a marker of small clear vesicles, and synaptotagmin-like immunoreactivity (Syt), a preferential marker of large dense core vesicles. We found that (i) VAChT and mENK, like ChAT-mENK, were coexpressed in only 59% of the mENK-containing varicosities, although they colocalized in the SPN cell bodies; and (ii) almost 60% of the population of mENK-containing varicosities did not express Syn or Syt, and over 80% of the mENK-containing varicosities negative for VAChT also lacked Syn. These data prove that SPN segregate mENK from VAChT and ChAT, and show that most of the subset of mENKergic varicosities negative for VAChT also does not express Syn, suggesting the presence of a different vesicular pattern in these sympathetic preganglionic varicosities.


Assuntos
Acetilcolina/metabolismo , Colina O-Acetiltransferase/metabolismo , Encefalina Metionina/metabolismo , Gânglios Simpáticos/metabolismo , Terminações Pré-Sinápticas/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Animais , Gânglios Simpáticos/ultraestrutura , Imuno-Histoquímica , Masculino , Terminações Pré-Sinápticas/ultraestrutura , Ratos , Ratos Wistar , Transmissão Sináptica/fisiologia , Sinaptofisina/metabolismo , Sinaptotagminas/metabolismo
5.
Synapse ; 60(4): 295-306, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16786529

RESUMO

Cholinergic sympathetic preganglionic neurons (SPN) coexpress the biosynthetic enzyme for acetylcholine, choline acetyl-transferase (ChAT), and neuropeptides such as enkephalin (ENK) in their cell bodies. However, it is not clear whether they also coexpress ChAT and neuropeptides in axon fibers and boutons. To explore coexpression of ChAT and neuropeptides in somata and axon processes of SPN, we investigated, using immunohistochemistry, retrograde labeling, confocal analysis, and tridimensional reconstruction, whether ChAT and the peptides neurotensin, methionine-ENK, somatostatin, calcitonin gene-related peptide, and vasoactive intestinal peptide colocalize in somata, axons fibers, and boutons of cat SPN. Practically, complete colocalization for these peptides and ChAT was observed in SPN somata. Conversely, in most instances we observed independent localization of immunoreactivity (IR) for ChAT and the peptides in axon fibers and boutons. The minor colocalization between ChAT- and peptide-IR in preganglionic fibers could correspond to a sequential axonal transport of ChAT and peptides, since we observed coexistence of these transmitters after blocking axonal transport. Contrary to Dale's principle, our results suggest that SPN can synthesize ChAT and peptides in their cell bodies and route them to distinct axon boutons or terminals in sympathetic ganglia. Presence of axon boutons containing either ChAT or neuropeptides lead us to suggest a new neurochemical pattern of cotransmission in sympathetic ganglia based on the concurrent release of transmitters and cotransmitters from distinct presynaptic boutons, rather than in the corelease of these mediators from the same axon process. The possibility that cellular segregation could be transient and depend on functional requirements is considered.


Assuntos
Fibras Autônomas Pré-Ganglionares/metabolismo , Axônios/metabolismo , Colina O-Acetiltransferase/metabolismo , Fibras Nervosas/metabolismo , Neuropeptídeos/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Gatos , Encefalina Metionina/metabolismo , Feminino , Imuno-Histoquímica , Masculino , Microscopia Confocal , Neurotensina/metabolismo , Somatostatina/metabolismo , Medula Espinal/metabolismo , Gânglio Estrelado/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...