Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gigascience ; 8(8)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31363752

RESUMO

BACKGROUND: Mapping biomedical data to functional knowledge is an essential task in bioinformatics and can be achieved by querying identifiers (e.g., gene sets) in pathway knowledge bases. However, the isoform and posttranslational modification states of proteins are lost when converting input and pathways into gene-centric lists. FINDINGS: Based on the Reactome knowledge base, we built a network of protein-protein interactions accounting for the documented isoform and modification statuses of proteins. We then implemented a command line application called PathwayMatcher (github.com/PathwayAnalysisPlatform/PathwayMatcher) to query this network. PathwayMatcher supports multiple types of omics data as input and outputs the possibly affected biochemical reactions, subnetworks, and pathways. CONCLUSIONS: PathwayMatcher enables refining the network representation of pathways by including proteoforms defined as protein isoforms with posttranslational modifications. The specificity of pathway analyses is hence adapted to different levels of granularity, and it becomes possible to distinguish interactions between different forms of the same protein.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Transdução de Sinais , Software , Humanos , Polimorfismo de Nucleotídeo Único , Mapeamento de Interação de Proteínas/métodos , Processamento de Proteína Pós-Traducional
2.
J Proteome Res ; 18(6): 2686-2692, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31081335

RESUMO

Mass-spectrometry-based proteomics enables the high-throughput identification and quantification of proteins, including sequence variants and post-translational modifications (PTMs) in biological samples. However, most workflows require that such variations be included in the search space used to analyze the data, and doing so remains challenging with most analysis tools. In order to facilitate the search for known sequence variants and PTMs, the Proteomics Standards Initiative (PSI) has designed and implemented the PSI extended FASTA format (PEFF). PEFF is based on the very popular FASTA format but adds a uniform mechanism for encoding substantially more metadata about the sequence collection as well as individual entries, including support for encoding known sequence variants, PTMs, and proteoforms. The format is very nearly backward compatible, and as such, existing FASTA parsers will require little or no changes to be able to read PEFF files as FASTA files, although without supporting any of the extra capabilities of PEFF. PEFF is defined by a full specification document, controlled vocabulary terms, a set of example files, software libraries, and a file validator. Popular software and resources are starting to support PEFF, including the sequence search engine Comet and the knowledge bases neXtProt and UniProtKB. Widespread implementation of PEFF is expected to further enable proteogenomics and top-down proteomics applications by providing a standardized mechanism for encoding protein sequences and their known variations. All the related documentation, including the detailed file format specification and example files, are available at http://www.psidev.info/peff .


Assuntos
Proteômica/normas , Humanos , Armazenamento e Recuperação da Informação , Espectrometria de Massas , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...