Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Open Res Eur ; 3: 173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37990739

RESUMO

Background: The surface errors found in X-ray mirrors constitute a limiting factor for preserving beam quality. This is particularly important when the X-ray beam has low emittance and a significant coherence fraction, like in newly upgraded synchrotron storage rings. Methods: We studied the fringes observed in the image of an undulator-produced X-ray beam reflected by a high-quality toroidal mirror. The measurements and simulations were performed using different conditions: a photon beam either monochromatic or with large bandwidth, reflected by a mirror with variable curvature. Results: The experimental data are compared with up-to-date simulation including partial coherence. Conclusions: The observed fringes in the unfocused beam correlate with low spatial frequency structures in mirror profiles, irrespective of beam coherence. Both classical ray tracing and partially coherent simulations through coherent mode decomposition are confirmed as accurate methods for such simulations.


In this study, researchers focused on the surface errors found in X-ray mirrors and their impact on beam quality. These errors can be problematic, especially when dealing with X-ray beams coming from low emittance (a measure of beam size and divergence) electron beam sources and a significant coherence fraction (indicating the level of wavefront coherence). The researchers specifically investigated the fringes observed in the image of an X-ray beam produced by an undulator and reflected by a high-quality toroidal mirror. They conducted measurements and simulations under different conditions, such as using a monochromatic photon beam or one with a wide range of wavelengths, and varying the curvature of the mirror.

2.
Opt Express ; 31(5): 7617-7631, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859890

RESUMO

In this work, we measure and model tilted x-ray refractive lenses to investigate their effects on an x-ray beam. The modelling is benchmarked against at-wavelength metrology obtained with x-ray speckle vector tracking experiments (XSVT) at the BM05 beamline at the ESRF-EBS light source, showing very good agreement. This validation permits us to explore possible applications of tilted x-ray lenses in optical design. We conclude that while tilting 2D lenses does not seem interesting from the point of view of aberration-free focusing, tilting 1D lenses around their focusing direction can be used for smoothly fine-tuning their focal length. We demonstrate experimentally this continuous change in the apparent lens radius of curvature R: a reduction up to a factor of two and beyond is achieved and possible applications in beamline optical design are proposed.

3.
J Synchrotron Radiat ; 30(Pt 3): 514-518, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36897396

RESUMO

Mirror-centered, closed-form expressions for hyperbolic surfaces used in X-ray beamlines have been derived. Hyperbolic mirrors create a virtual focus or source point and can be used to lengthen or shorten the effective focal distance of a compound optical system. The derivations here express off-axis segments of a hyperbolic surface in terms of the real and virtual focal distances and the incident glancing angle at the center of the mirror. Conventional mathematical expressions of hyperbolic shapes describe the surfaces in Cartesian or polar coordinates centered on an axis of symmetry, necessitating cumbersome rotation and translation to mirror-centered coordinates. The representation presented here, with zero slope and the origin at the central point, is most convenient for modeling, metrology, aberration correction, and general surface analysis of off-axis configurations. The direct derivation avoids the need for nested coordinate transforms. A series expansion provides a helpful approximation; the coefficients of the implicit equation are also provided.

4.
J Synchrotron Radiat ; 29(Pt 6): 1354-1367, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36345743

RESUMO

A new algorithm to perform coherent mode decomposition of undulator radiation is proposed. It is based on separating the horizontal and vertical directions, reducing the problem by working with one-dimension wavefronts. The validity conditions of this approximation are discussed. Simulations require low computer resources and run interactively on a laptop. The focusing with lenses of the radiation emitted by an undulator in a fourth-generation storage ring (EBS-ESRF) is studied. Results are compared against multiple optics packages implementing a variety of methods for dealing with partial coherence: full two-dimension coherent mode decomposition, Monte Carlo combination of wavefronts from electrons entering the undulator with different initial conditions, and hybrid ray-tracing correcting geometrical optics with wave optics.

5.
J Synchrotron Radiat ; 29(Pt 1): 148-158, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985432

RESUMO

The location of the beam focus when monochromatic X-ray radiation is diffracted by a thin bent crystal is predicted by the `crystal lens equation'. This equation is derived in a general form valid for Bragg and Laue geometries. It has little utility for diffraction in Laue geometry. The focusing effect in the Laue symmetrical case is discussed using concepts of dynamical theory and an extension of the lens equation is proposed. The existence of polychromatic focusing is considered and the feasibility of matching the polychromatic and monochromatic focal positions is discussed.

6.
J Synchrotron Radiat ; 28(Pt 5): 1423-1436, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34475290

RESUMO

Finite-element analysis is used to study the thermal deformation of a multilayer mirror due to the heat load from the undulator beam at a low-emittance synchrotron source, specifically the ESRF-EBS upgrade beamline EBSL-2. The energy bandwidth of the double-multilayer monochromator is larger than that of the relevant undulator harmonic, such that a considerable portion of the heat load is reflected. Consequently, the absorbed power is non-uniformly distributed on the surface. The geometry of the multilayer substrate is optimized to minimize thermally induced slope errors. We distinguish between thermal bending with constant curvature that leads to astigmatic focusing or defocusing and residual slope errors. For the EBSL-2 system with grazing angles θ between 0.2 and 0.4°, meridional and sagittal focal lengths down to 100 m and 2000 m, respectively, are found. Whereas the thermal bending can be tuned by varying the depth of the `smart cut', it is found that the geometry has little effect on the residual slope errors. In both planes they are 0.1-0.25 µrad. In the sagittal direction, however, the effect on the beam is drastically reduced by the `foregiveness factor', sin(θ). Optimization without considering the reflected heat load yields an incorrect depth of the `smart cut'. The resulting meridional curvature in turn leads to parasitic focal lengths of the order of 100 m.

7.
J Synchrotron Radiat ; 28(Pt 4): 1031-1040, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34212866

RESUMO

A new type of optical element that can focus a cylindrical wave to a point focus (or vice versa) is analytically described. Such waves are, for example, produced in a beamline where light is collimated in one direction and then doubly focused by a single optic. A classical example in X-ray optics is the collimated two-crystal monochromator, with toroidal mirror refocusing. The element here replaces the toroid, and in such a system provides completely aberration free, point-to-point imaging of rays from the on-axis source point. We present an analytic solution for the mirror shape in its laboratory coordinate system with zero slope at the centre, and approximate solutions, based on bending an oblique circular cone and a bent right circular cylinder, that may facilitate fabrication and metrology.

8.
J Synchrotron Radiat ; 28(Pt 4): 1041-1049, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34212867

RESUMO

The diaboloid is a reflecting surface that converts a spherical wave to a cylindrical wave. This complex surface may find application in new Advanced Light Source bending-magnet beamlines or in other beamlines that now use toroidal optics for astigmatic focusing. Here, the numerical implementation of diaboloid mirrors is described, and the benefit of this mirror in beamlines exploiting diffraction-limited storage rings is studied by ray tracing. The use of diaboloids becomes especially interesting for the new low-emittance storage rings because the reduction of aberration becomes essential for such small sources. The validity of the toroidal and other mirror surfaces approximating the diaboloid, and the effect of the mirror magnification, are discussed.

9.
J Synchrotron Radiat ; 28(Pt 1): 91-103, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399557

RESUMO

The performance of a liquid-nitrogen-cooled high-heat-load monochromator with a horizontal scattering plane has been analysed, aiming to preserve the high quality of the X-ray beam in the vertical plane for downstream optics. Using finite-element analysis, height profiles of the crystal surface for various heat loads and the corresponding slope errors in the meridional and sagittal planes were calculated. Then the angular distortions of the reflected beam in both meridional and sagittal planes were calculated analytically and also modelled by ray tracing, revealing a good agreement of the two approaches. The results show that with increasing heat load in the crystal the slope errors of the crystal surface reach their smallest values first in the sagittal and then in the meridional plane. For the considered case of interest at a photon energy of 14.412 keV and the Si(111) reflection with a Bragg angle of 7.88°, the angular distortions of the reflected beam in the sagittal plane are an order of magnitude smaller than in the meridional one. Furthermore, they are smaller than the typical angular size of the beam source at the monochromator position. For a high-heat-load monochromator operating in the horizontal scattering plane, the sagittal angular distortions of the reflected beam appear in the vertical plane. Thus, such an instrument perfectly preserves the high quality of the X-ray beam in the vertical plane for downstream optics. Compared with vertical scattering, the throughput of the monochromatic beam with the horizontal scattering plane is reduced by only 3.3% for the new EBS source, instead of 34.3% for the old ESRF-1 machine. This identifies the horizontal-scattering high-heat-load monochromator as a device essentially free of the heat-load effects in the vertical plane and without significant loss in terms of throughput.

10.
J Synchrotron Radiat ; 27(Pt 5): 1108-1120, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876585

RESUMO

The OASYS suite and its powerful integration features are used to implement a ray-tracing algorithm to accurately calculate the thermal load in any component of an undulator-based synchrotron beamline. This is achieved by sampling and converting the SRW source of a given energy into a Shadow source and using the latter code to ray trace the full beamline. The accuracy of the algorithm is proved by reconstructing the full undulator radiation distribution through an aperture and comparing the result with direct calculaton of the total power using SRW. The algorithm is particularly suited to analyze cases with complex beamline layouts and optical elements, such as crystals, multilayers, and compound refractive lenses. Examples of its use to calculate the power load on elements of two of the feature beamlines at the Advanced Photon Source Upgrade Project and a comparison of the results with analytical calculations are presented.

11.
J Synchrotron Radiat ; 27(Pt 5): 1131-1140, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876587

RESUMO

This paper presents a novel cantilevered liquid-nitrogen-cooled silicon mirror design for the first optic in a new soft X-ray beamline that is being developed as part of the Advanced Light Source Upgrade (ALS-U) (Lawrence Berkeley National Laboratory, USA). The beamline is optimized for photon energies between 400 and 1400 eV with full polarization control. Calculations indicate that, without correction, this design will achieve a Strehl ratio greater than 0.85 for the entire energy and polarization ranges of the beamline. With a correction achieved by moving the focus 7.5 mm upstream, the minimum Strehl ratio is 0.99. This design is currently the baseline plan for all new ALS-U insertion device beamlines.

12.
J Synchrotron Radiat ; 27(Pt 5): 1141-1152, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876588

RESUMO

A realistic wave optics simulation method has been developed to study how wavefront distortions originating from heat load deformations can be corrected using adaptive X-ray optics. Several planned soft X-ray and tender X-ray insertion-device beamlines in the Advanced Light Source upgrade rely on a common design principle. A flat, first mirror intercepts the white beam; vertical focusing is provided by a variable-line-space monochromator; and horizontal focusing comes from a single, pre-figured, adaptive mirror. A variety of scenarios to cope with thermal distortion in the first mirror are studied by finite-element analysis. The degradation of the intensity distribution at the focal plane is analyzed and the adaptive optics that correct it is modeled. The range of correctable wavefront errors across the operating range of the beamlines is reported in terms of mirror curvature and spatial frequencies. The software developed is a one-dimensional wavefront propagation package made available in the OASYS suite, an adaptable, customizable and efficient beamline modeling platform.

13.
J Synchrotron Radiat ; 27(Pt 2): 305-318, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32153269

RESUMO

A framework based on physical optics for simulating the effect of imperfect compound refractive lenses (CRLs) upon an X-ray beam is described, taking into account measured phase errors obtained from at-wavelength metrology. A CRL stack is modelled, with increasing complexity, as a single thin phase element, then as a more realistic compound element including absorption and thickness effects, and finally adding realistic optical imperfections to the CRL. Coherent and partially coherent simulations using Synchrotron Radiation Workshop (SRW) are used to evaluate the different models, the effects of the phase errors and to check the validity of the design equations and suitability of the figures of merit.

14.
J Synchrotron Radiat ; 26(Pt 6): 1887-1901, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31721731

RESUMO

Different approaches to simulate a modern X-ray beamline are considered. Several methodologies with increasing complexity are applied to discuss the relevant parameters that quantify the beamline performance. Parameters such as flux, dimensions and intensity distribution of the focused beam, and coherence properties are obtained from simple analytical calculations to sophisticated computer simulations using ray-tracing and wave optics techniques. A latest-generation X-ray nanofocusing beamline for coherent applications (ID16A at the ESRF) has been chosen to study in detail the issues related to highly demagnifying synchrotron sources and exploiting the beam coherence. The performance of the beamline is studied for two storage rings: the old ESRF-1 (emittance 4000 pm) and the new ESRF-EBS (emittance 150 pm). In addition to traditional results in terms of flux and beam sizes, an innovative study on the partial coherence properties based on the propagation of coherent modes is presented. The different algorithms and methodologies are implemented in the software suite OASYS. These are discussed with emphasis placed upon the their benefits and limitations of each.

15.
J Synchrotron Radiat ; 24(Pt 3): 622-635, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28452754

RESUMO

A Monte Carlo algorithm has been developed to calculate the instrumental profile function of a powder diffraction synchrotron beamline. Realistic models of all optical elements are implemented in a ray-tracing software. The proposed approach and the emerging paradigm have been investigated and verified for several existing X-ray powder diffraction beamlines. The results, which can be extended to further facilities, show a new and general way of assessing the contribution of instrumental broadening to synchrotron radiation data, based on ab initio simulations.

16.
J Synchrotron Radiat ; 23(Pt 6): 1357-1367, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27787241

RESUMO

A new computer environment to perform simulations on synchrotron experiments has been designed. It performs ray-tracing simulations using the popular ray-tracing code SHADOW. With this new application one can define, in a very easy and elegant way, one or several optical systems (beamlines) and perform calculations of the propagation of the X-ray beam through it. Many complementary tools and supplementary calculations improve and extend the functionality of SHADOW to deal with complex optical system optimization, including compound optical elements, iterative calculations, some sample simulations, and implementing corrections for wave optics via a hybrid model.

17.
J Synchrotron Radiat ; 23(Pt 3): 665-78, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27140145

RESUMO

An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper, with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. Some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.

18.
J Synchrotron Radiat ; 22(2): 317-27, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25723932

RESUMO

Multilayer optics for X-rays typically consist of hundreds of periods of two types of alternating sub-layers which are coated on a silicon substrate. The thickness of the coating is well below 1 µm (tens or hundreds of nanometers). The high aspect ratio (∼10(7)) between the size of the optics and the thickness of the multilayer can lead to a huge number of elements (∼10(16)) for the numerical simulation (by finite-element analysis using ANSYS code). In this work, the finite-element model for thermal-structural analysis of multilayer optics has been implemented using the ANSYS layer-functioned elements. The number of meshed elements is considerably reduced and the number of sub-layers feasible for the present computers is increased significantly. Based on this technique, single-layer coated mirrors and multilayer monochromators cooled by water or liquid nitrogen are studied with typical parameters of heat-load, cooling and geometry. The effects of cooling-down of the optics and heating of the X-ray beam are described. It is shown that the influences from the coating on temperature and deformation are negligible. However, large stresses are induced in the layers due to the different thermal expansion coefficients between the layer and the substrate materials, which is the critical issue for the survival of the optics. This is particularly true for the liquid-nitrogen cooling condition. The material properties of thin multilayer films are applied in the simulation to predict the layer thermal stresses with more precision.

19.
J Synchrotron Radiat ; 21(Pt 4): 669-78, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24971960

RESUMO

A new method for beamline simulation combining ray-tracing and wavefront propagation is described. The `Hybrid Method' computes diffraction effects when the beam is clipped by an aperture or mirror length and can also simulate the effect of figure errors in the optical elements when diffraction is present. The effect of different spatial frequencies of figure errors on the image is compared with SHADOW results pointing to the limitations of the latter. The code has been benchmarked against the multi-electron version of SRW in one dimension to show its validity in the case of fully, partially and non-coherent beams. The results demonstrate that the code is considerably faster than the multi-electron version of SRW and is therefore a useful tool for beamline design and optimization.

20.
J Synchrotron Radiat ; 21(Pt 3): 507-17, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24763640

RESUMO

The crystal lattice of single-crystal silicon gives rise to anisotropic elasticity. The stiffness and compliance coefficient matrix depend on crystal orientation and, consequently, Young's modulus, the shear modulus and Poisson's ratio as well. Computer codes (in Matlab and Python) have been developed to calculate these anisotropic elasticity parameters for a silicon crystal in any orientation. These codes facilitate the evaluation of these anisotropy effects in silicon for applications such as microelectronics, microelectromechanical systems and X-ray optics. For mechanically bent X-ray optics, it is shown that the silicon crystal orientation is an important factor which may significantly influence the optics design and manufacturing phase. Choosing the appropriate crystal orientation can both lead to improved performance whilst lowering mechanical bending stresses. The thermal deformation of the crystal depends on Poisson's ratio. For an isotropic constant Poisson's ratio, ν, the thermal deformation (RMS slope) is proportional to (1 + ν). For a cubic anisotropic material, the thermal deformation of the X-ray optics can be approximately simulated by using the average of ν12 and ν13 as an effective isotropic Poisson's ratio, where the direction 1 is normal to the optic surface, and the directions 2 and 3 are two normal orthogonal directions parallel to the optical surface. This average is independent of the direction in the optical surface (the crystal plane) for Si(100), Si(110) and Si(111). Using the effective isotropic Poisson's ratio for these orientations leads to an error in thermal deformation smaller than 5.5%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...