Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(4): 4391-4397, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36743032

RESUMO

Detection of pathogens has become increasingly important, especially in the face of outbreaks and epidemics all over the world. Nucleic acid detection techniques provide a solid base to detect and identify pathogens. In recent years, magnetic sensors and magnetic labels have become of more interest due to their simplicity of use, low cost, and versatility. In this work, we have used the isothermal DNA amplification technique of rolling circle amplification (RCA) in combination with oligo-functionalized magnetic nanoparticles. Detection of RCA products takes place through specific binding between magnetic nanoparticles and RCA products. Upon binding, the relaxation frequency of the nanoparticle changes. This change was measured using an AC susceptometer. We showcase that the RCA time can be reduced for a quicker assay when performing the RCA on the surface of micrometer-sized beads, which consequently increases the hydrodynamic volume of the RCA products. This, in turn, increases the Brownian relaxation frequency shift of the nanoparticles upon binding. We performed optimization work to determine the ideal quantity of micrometer-sized particles, oligo-functionalized nanoparticles, and the amplification time of the RCA. We show that the detection of 0.75 fmol of preamplification synthetic target is possible with only 20 min of amplification time. Finally, we showcase the high specificity of the assay, as the functionalized nanoparticles are unable to bind to amplified DNA that does not match their labels. Overall, this paves the way for a simple bioassay that can be used without expensive laboratory equipment for detection of pathogens in outbreak settings and clinics around the world.

2.
ACS Omega ; 6(48): 32970-32976, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34901648

RESUMO

Visual detection of rolling circle amplification products (RCPs) has been achieved by specific aggregation with magnetic nanoparticles. The method presented here reliably generates aggregates in 1.5 h; these are visible to the naked eye in samples containing at least 0.4 fmol of RCPs. In addition, alternate current susceptometry and absorbance spectroscopy have also been used to quantify the amplified products. The specificity of the detection method was tested, and no non-specific aggregation was detected in samples containing up to 20 fmol of non-complementary amplified DNA. This method is a versatile tool for detecting pathogenic DNA in point-of-care diagnostics, with no readout equipment required. However, chips and automated assays can be used in conjugation with the developed method since detection and quantification can be achieved by commercially available readout instruments.

3.
Biosensors (Basel) ; 11(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071179

RESUMO

This work explores several issues of importance for the development of a diagnostic method based on circle-to-circle amplification (C2CA) and oligonucleotide-functionalized magnetic nanoparticles. Firstly, the performance of the detection method was evaluated in terms of sensitivity and speed. Synthetic target sequences for Newcastle disease virus and Salmonella were used as model sequences. The sensitivity of the C2CA assay resulted in detection of 1 amol of starting DNA target with a total amplification time of 40 min for both target sequences. Secondly, the functionalization of the nanoparticles was evaluated in terms of robustness and stability. The functionalization was shown to be very robust, and the stability test showed that 92% of the oligos were still attached on the particle surface after three months of storage at 4 °C. Altogether, the results obtained in this study provide a strong foundation for the development of a quick and sensitive diagnostic assay.


Assuntos
Técnicas Biossensoriais , Nanopartículas de Magnetita , DNA , Magnetismo , Técnicas de Amplificação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...