Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Exp Bot ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38938160

RESUMO

The flowering time (FT), which determines when fruits or seeds can be harvested, is subject to phenotypic plasticity, i.e. the ability of a genotype to display different phenotypes in response to environmental variations. Here, we investigated how the environment affects the genetic architecture of FT in cultivated strawberry (Fragaria ×ananassa) and modifies its QTL effects. To this end, we used a bi-parental segregating population grown for two years at widely divergent latitudes (5 European countries) and combined climatic variables with genomic data (Affymetrix® SNP array). Examination, using different phenological models, of the response of FT to photoperiod, temperature and global radiation, indicated that temperature is the main driver of FT in strawberry. We next characterized in the segregating population the phenotypic plasticity of FT by using three statistical approaches that generated plasticity parameters including reaction norm parameters. We detected 25 FT QTL summarized into 10 unique QTL. Mean values and plasticity parameters QTL were co-localized in three of them, including the major 6D_M QTL whose effect is strongly modulated by temperature. The design and validation of a genetic marker for the 6D_M QTL offers great potential for breeding programs, for example for selecting early-flowering strawberry varieties well adapted to different environmental conditions.

2.
Plant J ; 116(5): 1201-1217, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37597203

RESUMO

Woodland strawberry (Fragaria vesca subsp. vesca) is a wild relative of cultivated strawberry (F. × ananassa) producing small and typically conical fruits with an intense flavor and aroma. The wild strawberry species, F. vesca, is a rich resource of genetic and metabolic variability, but its diversity remains largely unexplored and unexploited. In this study, we aim for an in-depth characterization of the fruit complex volatilome by GC-MS as well as the fruit size and shape using a European germplasm collection that represents the continental diversity of the species. We report characteristic volatilome footprints and fruit phenotypes of specific geographical areas. Thus, this study uncovers phenotypic variation linked to geographical distribution that will be valuable for further genetic studies to identify candidate genes or develop markers linked to volatile compounds or fruit shape and size traits.


Assuntos
Fragaria , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Fenótipo , Cromatografia Gasosa-Espectrometria de Massas
3.
Hortic Res ; 10(3): uhad006, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36938573

RESUMO

Strawberry (Fragaria × ananassa) fruits are an excellent source of L-ascorbic acid (AsA), a powerful antioxidant for plants and humans. Identifying the genetic components underlying AsA accumulation is crucial for enhancing strawberry nutritional quality. Here, we unravel the genetic architecture of AsA accumulation using an F1 population derived from parental lines 'Candonga' and 'Senga Sengana', adapted to distinct Southern and Northern European areas. To account for environmental effects, the F1 and parental lines were grown and phenotyped in five locations across Europe (France, Germany, Italy, Poland and Spain). Fruit AsA content displayed normal distribution typical of quantitative traits and ranged five-fold, with significant differences among genotypes and environments. AsA content in each country and the average in all of them was used in combination with 6,974 markers for quantitative trait locus (QTL) analysis. Environmentally stable QTLs for AsA content were detected in linkage group (LG) 3A, LG 5A, LG 5B, LG 6B and LG 7C. Candidate genes were identified within stable QTL intervals and expression analysis in lines with contrasting AsA content suggested that GDP-L-Galactose Phosphorylase FaGGP(3A), and the chloroplast-located AsA transporter gene FaPHT4;4(7C) might be the underlying genetic factors for QTLs on LG 3A and 7C, respectively. We show that recessive alleles of FaGGP(3A) inherited from both parental lines increase fruit AsA content. Furthermore, expression of FaGGP(3A) was two-fold higher in lines with high AsA. Markers here identified represent a useful resource for efficient selection of new strawberry cultivars with increased AsA content.

4.
Biochem Soc Trans ; 51(1): 57-70, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36629496

RESUMO

The discovery of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) along with its potent and selective antitumor effects initiated a decades-long search for therapeutic strategies to target the TRAIL pathway. First-generation approaches were focused on the development of TRAIL receptor agonists (TRAs), including recombinant human TRAIL (rhTRAIL) and TRAIL receptor-targeted agonistic antibodies. While such TRAIL pathway-targeted therapies showed promise in preclinical data and clinical trials have been conducted, none have advanced to FDA approval. Subsequent second-generation approaches focused on improving upon the specific limitations of first-generation approaches by ameliorating the pharmacokinetic profiles and agonistic abilities of TRAs as well as through combinatorial approaches to circumvent resistance. In this review, we summarize the successes and shortcomings of first- and second-generation TRAIL pathway-based therapies, concluding with an overview of the discovery and clinical introduction of ONC201, a compound with a unique mechanism of action that represents a new generation of TRAIL pathway-based approaches. We discuss preclinical and clinical findings in different tumor types and provide a unique perspective on translational directions of the field.


Assuntos
Apoptose , Receptores de Morte Celular , Humanos
5.
Lancet Healthy Longev ; 3(6): e405-e416, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-36098319

RESUMO

BACKGROUND: Respiratory viral infections are typically more severe in older adults. Older adults are more vulnerable to infection and do not respond effectively to vaccines due to a combination of immunosenescence, so-called inflamm-ageing, and accumulation of comorbidities. Although age-related changes in immune responses have been described, the causes of this enhanced respiratory disease in older adults remain poorly understood. We therefore performed volunteer challenge with respiratory syncytial virus (RSV) in groups of younger and older adult volunteers. The aim of this study was to establish the safety and tolerability of this model and define age-related clinical, virological, and immunological outcomes. METHODS: In this human infection challenge pilot study, adults aged 18-55 years and 60-75 years were assessed for enrolment using protocol-defined inclusion and exclusion criteria. Symptoms were documented by self-completed diaries and viral load determined by quantitative PCR of nasal lavage. Peripheral blood B cell frequencies were measured by enzyme-linked immunospot and antibodies against pre-fusion and post-fusion, NP, and G proteins in the blood and upper respiratory tract were measured. The study was registered with ClinicalTrials.gov, NCT03728413. FINDINGS: 381 adults aged 60-75 years (older cohort) and 19 adults aged 18-55 years (young cohort) were assessed for enrolment using protocol-defined inclusion and exclusion criteria between Nov 12, 2018, and Feb 26, 2020. 12 healthy volunteers aged 60-75 years and 21 aged 18-55 years were inoculated intranasally with RSV Memphis-37. Nine (67%) of the 12 older volunteers became infected, developing mild-to-moderate upper respiratory tract symptoms that resolved without serious adverse events or sequelae. Viral load peaked on day 6 post-inoculation and symptoms peaked between days 6 and 8. Increases in circulating IgG-positive and IgA-positive antigen-specific plasmablasts, serum neutralising antibodies, and pre-F specific IgG were similar younger and older adults. However, in contrast to young participants, secretory IgA titres in older volunteers failed to increase during infection and, unlike serum IgG, did not correlate with protection. INTERPRETATION: Better understanding of age-related differences in clinical outcomes and immune correlates of protection can overcome reduction in vaccine efficacy with advancing age. We identify correlates of protection in older adults, revealing previously unrecognised factors which might have implications for targeted vaccine discovery and drug development in this vulnerable group. FUNDING: Medical Research Council and GlaxoSmithKline EMINENT Consortium.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Idoso , Anticorpos Antivirais , Humanos , Imunoglobulina G , Projetos Piloto , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Adulto Jovem
6.
Front Plant Sci ; 13: 971846, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061771

RESUMO

The diploid woodland strawberry (F. vesca) represents an important model for the genus Fragaria. Significant advances in the understanding of the molecular mechanisms regulating seasonal alternance of flower induction and vegetative reproduction has been made in this species. However, this research area has received little attention on the cultivated octoploid strawberry (F. × ananassa) despite its enormous agronomical and economic importance. To advance in the characterization of this intricated molecular network, expression analysis of key flowering time genes was performed both in short and long days and in cultivars with seasonal and perpetual flowering. Analysis of overexpression of FaCO and FaSOC1 in the seasonal flowering 'Camarosa' allowed functional validation of a number of responses already observed in F. vesca while uncovered differences related to the regulation of FaFTs expression and gibberellins (GAs) biosynthesis. While FvCO has been shown to promote flowering and inhibit runner development in the perpetual flowering H4 accession of F. vesca, our study showed that FaCO responds to LD photoperiods as in F. vesca but delayed flowering to some extent, possibly by induction of the strong FaTFL1 repressor in crowns. A contrasting effect on runnering was observed in FaCO transgenic plants, some lines showing reduced runner number whereas in others runnering was slightly accelerated. We demonstrate that the role of the MADS-box transcription factor FaSOC1 as a strong repressor of flowering and promoter of vegetative growth is conserved in woodland and cultivated strawberry. Our study further indicates an important role of FaSOC1 in the photoperiodic repression of FLOWERING LOCUS T (FT) genes FaFT2 and FaFT3 while FaTFL1 upregulation was less prominent than that observed in F. vesca. In our experimental conditions, FaSOC1 promotion of vegetative growth do not require induction of GA biosynthesis, despite GA biosynthesis genes showed a marked photoperiodic upregulation in response to long days, supporting GA requirement for the promotion of vegetative growth. Our results also provided insights into additional factors, such as FaTEM, associated with the vegetative developmental phase that deserve further characterization in the future.

7.
Cir Cir ; 90(4): 473-480, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35944438

RESUMO

INTRODUCTION: To determine whether clinicopathological characteristics can improve the prediction of metastasis to nonsentinel lymph nodes (NSLNs) over the use of only mRNA copy number in sentinel lymph node (SLN) biopsies. METHODS: This was a retrospective, observational study that included a total of 824 patients with T1-3 breast cancer who had clinically negative, ultrasound-negative axilla without evidence of metastasis and who underwent one-step nucleic acid amplification in SLN biopsies. RESULTS: 118 required a complete axillary lymph node dissection (ALNhD). About 35.6% (42/118) had metastases to a NSLN, and 64.4% (76/118) had no metastasis to a NSLN. The ROC curve of the total tumor load (TTL) presented an area under the curve (AUC) of 0.651 (95%; CI: 0.552-0.751). The 7294 copies of CK19 mRNA were established as the optimal cutoff point, with sensitivity: 93%, specificity: 63%, positive predictive value: 44%, and negative predictive value: 91%. By associating the clinicopathological parameters (multicentricity, pooled immunohistochemistry [IHC], and progesterone receptors), the AUC went up to 0.752 (95% CI: 0.663-0.841). CONCLUSIONS: Clinicopathological factors should be considered together with the total CK19 mRNA copy number (the TTL) of the SLNs to improve the predictive capacity of metastatic involvement of the NSLNs.


INTRODUCCIÓN: Nuestro objetivo era determinar si la influencia de las características clínicopatológicas pueden mejorar la predicción de metástasis en los ganglios linfáticos no centinelas (GLNC) a partir de un punto de corte de copias de ARNm determinado en la biopsia del ganglio linfático centinela (GLC). MÉTODOS: Se realizó un estudio observacional retrospectivo incluyendo a un total de 824 pacientes con cáncer de mama T1-3, con axila clínica y ecográficamente negativa para metástasis en los ganglios axilares. Se les practicó una biopsia selectiva del GLC y estudio posterior mediante el método one step nucleic acid amplification (OSNA). RESULTADOS: 118 precisaron una disección completa de los ganglios linfáticos axilares. 35,6% (42/118) tuvieron metástasis en GLNC y 64.4% (76/118) no presentaron metástasis en GLNC. La curva ROC del log de la carga tumoral total (CTT) presentó un área bajo la curva de 0.651 (95%; IC: 0.552-0.751). Se estableció las 7294 copias de ARNm de CK19 como punto de corte óptimo, con sensibilidad: 93%, especificidad: 63%, valor predictivo positivo: 44% y valor predictivo negativo: 91%. Al asociar los parámetros clinicopatológicos (multicentricidad, inmunohistoquímica (IHQ) agrupado y receptores de progesterona) obtenemos un área bajo la curva mejorada de 0.752 (95% intervalo de confianza [IC] 0.663-0.841). CONCLUSIONES: Los factores clinicopatológicos deberían valorarse asociados al corte de copias de ARNm de la CTT de CK19 de los GLCs para mejorar la capacidad predictiva de afectación metastásica en los GLNCs.


Assuntos
Neoplasias da Mama , Axila , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Excisão de Linfonodo , Linfonodos/patologia , Linfonodos/cirurgia , Metástase Linfática/patologia , RNA Mensageiro , Biópsia de Linfonodo Sentinela
8.
Am J Cancer Res ; 12(2): 729-743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35261798

RESUMO

The American Cancer Society estimates that ~15% of all lung cancers are categorized as small cell lung cancer (SCLC) with an overall five-year survival rate of less than 7%. Due to disease aggressiveness, more other malignancies, the standard of care is based on clinical efficacy rather than helpful biomarkers. Lurbinectedin is a small molecule RNA polymerase II inhibitor that binds the minor groove of DNA to induce double-strand breaks. Lurbinectedin has efficacy towards SCLC cells at sub-nM concentration and received accelerated FDA approval in 2020 for metastatic SCLC that progressed on platinum-based therapy. ONC201/TIC10 is a TRAIL pathway-inducing compound that with demonstrated clinical efficacy in H3K27M-mutated diffuse midline glioma and neuroendocrine tumors, in early phase clinical trials. We hypothesized that combining ONC201 and lurbinectedin may yield synergistic and targeted killing of SCLC cells. SCLC cell lines H1048, H1105, H1882, and H1417 were treated with ONC201 and lurbinectedin and cell viability was determined using a CellTiter-Glo assay using varying drug concentrations. Synergistic growth inhibition of SCLC cells was noted with combination of ONC201 and lurbinectedin. Induction of the integrated stress response mediator ATF4 and CHOP was observed with ONC201 and lurbinectedin along with induction of PARP cleavage indicative of apoptosis in response to cellular stress. Additionally, SCLC lines treated with the combination therapy displayed increased DNA breakage-related proteins such as phosphorylated Chk-1, Wee1 and γ-H2AX. Combination index revealed the most potent synergy occurred at the concentrations of 0.16 µM ONC201 and 0.05 nM lurbinectedin in the H1048 cell line, demonstrating highly efficient and selective killing of these tumor cells in vitro. While these therapies showed potency against the cell lines derived from SCLC patients, it is noteworthy that the combination showed significantly less toxicity to healthy human lung epithelial cells. Future studies could explore the combination of ONC201 and lurbinectedin in SCLC cell lines, SCLC patient-derived organoids, other tumor types, including in vivo studies and clinical translation.

9.
Eur J Ophthalmol ; 32(3): 1547-1554, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34269103

RESUMO

PURPOSE: To describe the clinical and epidemiological characteristics of patients with Vogt-Koyanagi-Harada (VKH) disease in Spain. METHODS: This was a retrospective multicenter analysis of data from VKH patients followed for at least 6 months. The data collected were related to demographics, clinical manifestations, treatments, and complications. RESULTS: Participants were 112 patients (224 eyes), from 13 tertiary referral centers, of mean age 37.5 ± 14.7 years; 83.9% were women. Ethnicities were 61.6% Caucasian and 30.4% Hispanic. The disease was classified as complete in 16.1%, incomplete in 55.4%, and probable in 28.6%. When seen for the first time, the clinical course was acute in 69.6%, recurrent chronic in 15.2%, and chronic in 14.3%. The most frequent treatment was corticosteroids (acute stage 42.2%, maintenance stage 55.6%). The most common complications were cataract (41.1%) and ocular hypertension (16.1%). In most eyes, visual acuity was improved (96.7%) or remained stable at the end of follow up. CONCLUSION: VKH in Spain mostly affects women and presents as incomplete acute stage disease. Visual prognosis is good. Cataract and glaucoma are the two most frequent complications.


Assuntos
Catarata , Glaucoma , Síndrome Uveomeningoencefálica , Doença Aguda , Adulto , Catarata/complicações , Feminino , Glaucoma/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Espanha/epidemiologia , Síndrome Uveomeningoencefálica/diagnóstico , Síndrome Uveomeningoencefálica/tratamento farmacológico , Síndrome Uveomeningoencefálica/epidemiologia , Acuidade Visual , Adulto Jovem
10.
Development ; 148(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34568948

RESUMO

During early vertebrate heart development, the heart transitions from a linear tube to a complex asymmetric structure, a morphogenetic process that occurs simultaneously with growth of the heart. Cardiac growth during early heart morphogenesis is driven by deployment of cells from the second heart field (SHF) into both poles of the heart. Laminin is a core component of the extracellular matrix and, although mutations in laminin subunits are linked with cardiac abnormalities, no role for laminin has been identified in early vertebrate heart morphogenesis. We identified tissue-specific expression of laminin genes in the developing zebrafish heart, supporting a role for laminins in heart morphogenesis. Analysis of heart development in lamb1a zebrafish mutant embryos reveals mild morphogenetic defects and progressive cardiomegaly, and that Lamb1a functions to limit heart size during cardiac development by restricting SHF addition. lamb1a mutants exhibit hallmarks of altered haemodynamics, and blocking cardiac contractility in lamb1a mutants rescues heart size and atrial SHF addition. Together, these results suggest that laminin mediates interactions between SHF deployment and cardiac biomechanics during heart morphogenesis and growth in the developing embryo.


Assuntos
Átrios do Coração/metabolismo , Coração/fisiologia , Laminina/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Linhagem da Célula/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Cardiopatias Congênitas/metabolismo , Morfogênese/fisiologia , Miocárdio/metabolismo , Organogênese/fisiologia
11.
Front Plant Sci ; 12: 688481, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512686

RESUMO

Autophagy is a catabolic and recycling pathway that maintains cellular homeostasis under normal growth and stress conditions. Two major types of autophagy, microautophagy and macroautophagy, have been described in plants. During macroautophagy, cellular content is engulfed by a double-membrane vesicle called autophagosome. This vesicle fuses its outer membrane with the tonoplast and releases the content into the vacuole for degradation. During certain developmental processes, autophagy is enhanced by induction of several autophagy-related genes (ATG genes). Autophagy in crop development has been studied in relation to leaf senescence, seed and reproductive development, and vascular formation. However, its role in fruit ripening has only been partially addressed. Strawberry is an important berry crop, representative of non-climacteric fruit. We have analyzed the occurrence of autophagy in developing and ripening fruits of the cultivated strawberry. Our data show that most ATG genes are conserved in the genome of the cultivated strawberry Fragaria x ananassa and they are differentially expressed along the ripening of the fruit receptacle. ATG8-lipidation analysis proves the presence of two autophagic waves during ripening. In addition, we have confirmed the presence of autophagy at the cellular level by the identification of autophagy-related structures at different stages of the strawberry ripening. Finally, we show that blocking autophagy either biochemically or genetically dramatically affects strawberry growth and ripening. Our data support that autophagy is an active and essential process with different implications during strawberry fruit ripening.

12.
Sci Immunol ; 6(57)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692097

RESUMO

While it is now widely accepted that host inflammatory responses contribute to lung injury, the pathways that drive severity and distinguish coronavirus disease 2019 (COVID-19) from other viral lung diseases remain poorly characterized. We analyzed plasma samples from 471 hospitalized patients recruited through the prospective multicenter ISARIC4C study and 39 outpatients with mild disease, enabling extensive characterization of responses across a full spectrum of COVID-19 severity. Progressive elevation of levels of numerous inflammatory cytokines and chemokines (including IL-6, CXCL10, and GM-CSF) were associated with severity and accompanied by elevated markers of endothelial injury and thrombosis. Principal component and network analyses demonstrated central roles for IL-6 and GM-CSF in COVID-19 pathogenesis. Comparing these profiles to archived samples from patients with fatal influenza, IL-6 was equally elevated in both conditions whereas GM-CSF was prominent only in COVID-19. These findings further identify the key inflammatory, thrombotic, and vascular factors that characterize and distinguish severe and fatal COVID-19.


Assuntos
COVID-19/sangue , Citocinas/sangue , Adulto , Idoso , COVID-19/imunologia , Citocinas/imunologia , Feminino , Humanos , Inflamação/sangue , Inflamação/imunologia , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/sangue , Influenza Humana/imunologia , Masculino , Pessoa de Meia-Idade , SARS-CoV-2 , Índice de Gravidade de Doença
13.
Hortic Res ; 8(1): 58, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33750764

RESUMO

The strawberry Fra a 1 proteins belong to the class 10 Pathogenesis-Related (PR-10) superfamily. In strawberry, a large number of members have been identified, but only a limited number is expressed in the fruits. In this organ, Fra a 1.01 and Fra a 1.02 are the most abundant Fra proteins in the green and red fruits, respectively, however, their function remains unknown. To know the function of Fra a 1.02 we have generated transgenic lines that silence this gene, and performed metabolomics, RNA-Seq, and hormonal assays. Previous studies associated Fra a 1.02 to strawberry fruit color, but the analysis of anthocyanins in the ripe fruits showed no diminution in their content in the silenced lines. Gene ontology (GO) analysis of the genes differentially expressed indicated that oxidation/reduction was the most represented biological process. Redox state was not apparently altered since no changes were found in ascorbic acid and glutathione (GSH) reduced/oxidized ratio, but GSH content was reduced in the silenced fruits. In addition, a number of glutathione-S-transferases (GST) were down-regulated as result of Fra a 1.02-silencing. Another highly represented GO category was transport which included a number of ABC and MATE transporters. Among the regulatory genes differentially expressed WRKY33.1 and WRKY33.2 were down-regulated, which had previously been assigned a role in strawberry plant defense. A reduced expression of the VQ23 gene and a diminished content of the hormones JA, SA, and IAA were also found. These data might indicate that Fra a 1.02 participates in the defense against pathogens in the ripe strawberry fruits.

14.
Sci Rep ; 10(1): 20197, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214566

RESUMO

Phenylpropanoids are a large class of plant secondary metabolites, which play essential roles in human health mainly associated with their antioxidant activity. Strawberry (Fragaria × ananassa) is a rich source of phytonutrients, including phenylpropanoids, which have been shown to have beneficial effects on human health. In this study, using the F. × ananassa '232' × '1392' F1 segregating population, we analyzed the genetic control of individual phenylpropanoid metabolites, total polyphenol content (TPC) and antioxidant capacity (TEAC) in strawberry fruit over two seasons. We have identified a total of 7, 9, and 309 quantitative trait loci (QTL) for TPC, TEAC and for 77 polar secondary metabolites, respectively. Hotspots of stable QTL for health-related antioxidant compounds were detected on linkage groups LG IV-3, LG V-2 and V-4, and LG VI-1 and VI-2, where associated markers represent useful targets for marker-assisted selection of new varieties with increased levels of antioxidant secondary compounds. Moreover, differential expression of candidate genes for major and stable mQTLs was studied in fruits of contrasting lines in important flavonoids. Our results indicate that higher expression of FaF3'H, which encodes the flavonoid 3'-hydroxylase, is associated with increased content of these important flavonoids.


Assuntos
Antioxidantes/metabolismo , Fragaria/genética , Frutas/metabolismo , Compostos Fitoquímicos/genética , Polifenóis/genética , Mapeamento Cromossômico , Fragaria/metabolismo , Genótipo , Compostos Fitoquímicos/metabolismo , Polifenóis/metabolismo , Locos de Características Quantitativas
15.
Plant Cell ; 32(12): 3723-3749, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33004617

RESUMO

The fruits of diploid and octoploid strawberry (Fragaria spp) show substantial natural variation in color due to distinct anthocyanin accumulation and distribution patterns. Anthocyanin biosynthesis is controlled by a clade of R2R3 MYB transcription factors, among which MYB10 is the main activator in strawberry fruit. Here, we show that mutations in MYB10 cause most of the variation in anthocyanin accumulation and distribution observed in diploid woodland strawberry (F. vesca) and octoploid cultivated strawberry (F ×ananassa). Using a mapping-by-sequencing approach, we identified a gypsy-transposon in MYB10 that truncates the protein and knocks out anthocyanin biosynthesis in a white-fruited F. vesca ecotype. Two additional loss-of-function mutations in MYB10 were identified among geographically diverse white-fruited F. vesca ecotypes. Genetic and transcriptomic analyses of octoploid Fragaria spp revealed that FaMYB10-2, one of three MYB10 homoeologs identified, regulates anthocyanin biosynthesis in developing fruit. Furthermore, independent mutations in MYB10-2 are the underlying cause of natural variation in fruit skin and flesh color in octoploid strawberry. We identified a CACTA-like transposon (FaEnSpm-2) insertion in the MYB10-2 promoter of red-fleshed accessions that was associated with enhanced expression. Our findings suggest that cis-regulatory elements in FaEnSpm-2 are responsible for enhanced MYB10-2 expression and anthocyanin biosynthesis in strawberry fruit flesh.


Assuntos
Antocianinas/metabolismo , Fragaria/genética , Variação Genética , Proteínas de Plantas/metabolismo , Alelos , Diploide , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Poliploidia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20209411

RESUMO

Introductory paragraphThe mechanisms that underpin COVID-19 disease severity, and determine the outcome of infection, are only beginning to be unraveled. The host inflammatory response contributes to lung injury, but circulating mediators levels fall below those in classical cytokine storms. We analyzed serial plasma samples from 619 patients hospitalized with COVID-19 recruited through the prospective multicenter ISARIC clinical characterization protocol U.K. study and 39 milder community cases not requiring hospitalization. Elevated levels of numerous mediators including angiopoietin-2, CXCL10, and GM-CSF were seen at recruitment in patients who later died. Markers of endothelial injury (angiopoietin-2 and von-Willebrand factor A2) were detected early in some patients, while inflammatory cytokines and markers of lung injury persisted for several weeks in fatal COVID-19 despite decreasing antiviral cytokine levels. Overall, markers of myeloid or endothelial cell activation were associated with severe, progressive, and fatal disease indicating a central role for innate immune activation and vascular inflammation in COVID-19.

17.
Plant Biotechnol J ; 18(4): 929-943, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31533196

RESUMO

FaMADS9 is the strawberry (Fragaria x ananassa) gene that exhibits the highest homology to the tomato (Solanum lycopersicum) RIN gene. Transgenic lines were obtained in which FaMADS9 was silenced. The fruits of these lines did not show differences in basic parameters, such as fruit firmness or colour, but exhibited lower Brix values in three of the four independent lines. The gene ontology MapMan category that was most enriched among the differentially expressed genes in the receptacles at the white stage corresponded to the regulation of transcription, including a high percentage of transcription factors and regulatory proteins associated with auxin action. In contrast, the most enriched categories at the red stage were transport, lipid metabolism and cell wall. Metabolomic analysis of the receptacles of the transformed fruits identified significant changes in the content of maltose, galactonic acid-1,4-lactone, proanthocyanidins and flavonols at the green/white stage, while isomaltose, anthocyanins and cuticular wax metabolism were the most affected at the red stage. Among the regulatory genes that were differentially expressed in the transgenic receptacles were several genes previously linked to flavonoid metabolism, such as MYB10, DIV, ZFN1, ZFN2, GT2, and GT5, or associated with the action of hormones, such as abscisic acid, SHP, ASR, GTE7 and SnRK2.7. The inference of a gene regulatory network, based on a dynamic Bayesian approach, among the genes differentially expressed in the transgenic receptacles at the white and red stages, identified the genes KAN1, DIV, ZFN2 and GTE7 as putative targets of FaMADS9. A MADS9-specific CArG box was identified in the promoters of these genes.


Assuntos
Fragaria/genética , Frutas/crescimento & desenvolvimento , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Teorema de Bayes , Fragaria/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Metaboloma , Plantas Geneticamente Modificadas
18.
PLoS One ; 14(7): e0219481, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31314811

RESUMO

OBJECTIVES: To study the differences in the levels of nitrogen metabolites, such as ammonia and nitric oxide and the correlations existing among them in both red blood cells (RBCs) and serum, as well as the possible differences by gender in healthy subjects and patients with type 2 Diabetes Mellitus (DM). DESIGN AND METHODS: This cross-sectional study included 80 patients diagnosed with type 2 DM (40 female and 40 male patients) and their corresponding controls paired by gender (40 female and 40 male). We separated serum and RBC and determined metabolites mainly through colorimetric and spectrophotometric assays. We evaluated changes in the levels of the main catabolic by-products of blood nitrogen metabolism, nitric oxide (NO), and malondialdehyde (MDA). RESULTS: Healthy female and male controls showed a differential distribution of blood metabolites involved in NO metabolism and arginine metabolism for the ornithine and urea formation. Patients with DM had increased ammonia, citrulline, urea, uric acid, and ornithine, mainly in the RBCs, whereas the level of arginine was significantly lower in men with type 2 DM. These findings were associated with hyperglycemia, glycosylated hemoglobin (Hb A1C), and levels of RBC's MDA. Furthermore, most of the DM-induced alterations in nitrogen-related metabolites appear to be associated with a difference in the RBC capacity for the release of these metabolites, thereby causing an abrogation of the gender-related differential management of nitrogen metabolites in healthy subjects. CONCLUSIONS: We found evidence of a putative role of RBC as an extra-hepatic mechanism for controlling serum levels of nitrogen-related metabolites, which differs according to gender in healthy subjects. Type 2 DM promotes higher ammonia, citrulline, and MDA blood levels, which culminate in a loss of the differential management of nitrogen-related metabolites seen in healthy women and men.


Assuntos
Amônia/metabolismo , Arginina/metabolismo , Diabetes Mellitus Tipo 2/sangue , Eritrócitos/metabolismo , Estresse Oxidativo , Fatores Sexuais , Colorimetria , Estudos Transversais , Feminino , Humanos , Masculino , Malondialdeído/metabolismo , Óxido Nítrico/metabolismo , Nitrogênio/sangue , Espectrofotometria
19.
Hortic Res ; 6: 4, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30603090

RESUMO

Improvement of nutritional and organoleptic quality of fruits is a key goal in current strawberry breeding programs. The ratio of sugars to acids is a determinant factor contributing to fruit liking, although different sugars and acids contribute in varying degrees to this complex trait. A segregating F1 population of 95 individuals, previously characterized for several fruit quality characters, was used to map during 2 years quantitative trait loci (QTL) for 50 primary metabolites, l-ascorbic acid (L-AA) and other related traits such as soluble solid content (SSC), titratable acidity (TA), and pH. A total of 133 mQTL were detected above the established thresholds for 44 traits. Only 12.9% of QTL were detected in the 2 years, suggesting a large environmental influence on primary metabolite content. An objective of this study was the identification of key metabolites that were associated to the overall variation in SSC and acidity. As it was observed in previous studies, a number of QTL controlling several metabolites and traits were co-located in homoeology group V (HG V). mQTL controlling a large variance in raffinose, sucrose, succinic acid, and L-AA were detected in approximate the same chromosomal regions of different homoeologous linkage groups belonging to HG V. Candidate genes for selected mQTL are proposed based on their co-localization, on the predicted function, and their differential gene expression among contrasting F1 progeny lines. RNA-seq analysis from progeny lines contrasting in L-AA content detected 826 differentially expressed genes and identified Mannose-6-phosphate isomerase, FaM6PI1, as a candidate gene contributing to natural variation in ascorbic acid in strawberry fruit.

20.
J Agric Food Chem ; 66(3): 581-592, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29291263

RESUMO

Food fortification through the increase and/or modulation of bioactive compounds has become a major goal for preventing several diseases, including cancer. Here, strawberry lines of cv. Calypso transformed with a construct containing an anthocyanidin synthase (ANS) gene were produced to study the effects on anthocyanin biosynthesis, metabolism, and transcriptome. Three strawberry ANS transgenic lines (ANS L5, ANS L15, and ANS L18) were analyzed for phytochemical composition and total antioxidant capacity (TAC), and their fruit extracts were assessed for cytotoxic effects on hepatocellular carcinoma. ANS L18 fruits had the highest levels of total phenolics and flavonoids, while those of ANS L15 had the highest anthocyanin concentration; TAC positively correlated with total polyphenol content. Fruit transcriptome was also specifically affected in the polyphenol biosynthesis and in other related metabolic pathways. Fruit extracts of all lines exerted cytotoxic effects in a dose/time-dependent manner, increasing cellular apoptosis and free radical levels and impairing mitochondrial functionality.


Assuntos
Antioxidantes/análise , Fragaria/enzimologia , Frutas/química , Neoplasias Hepáticas/tratamento farmacológico , Oxigenases/genética , Proteínas de Plantas/genética , Antocianinas/análise , Antocianinas/biossíntese , Antocianinas/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose , Fragaria/química , Fragaria/genética , Frutas/enzimologia , Frutas/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/fisiopatologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxigenases/metabolismo , Proteínas de Plantas/metabolismo , Polifenóis/análise , Polifenóis/metabolismo , Polifenóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...