Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 10: 978728, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105607

RESUMO

Microbial sulfate (SO4 2-) reduction in Acid Mine Drainage (AMD) environments can ameliorate the acidity and extreme metal concentrations by consumption of protons via the reduction of SO4 2- to hydrogen sulfide (H2S) and the concomitant precipitation of metals as metal sulfides. The activity of sulfate-reducing bacteria can be stimulated by the amendment of suitable organic carbon sources in these generally oligotrophic environments. Here, we used incubation columns (IC) as model systems to investigate the effect of glycerol amendment on the microbial community composition and its effect on the geochemistry of sediment and waters in AMD environments. The ICs were built with natural water and sediments from four distinct AMD-affected sites with different nutrient regimes: the oligotrophic Filón Centro and Guadiana acidic pit lakes, the Tintillo river (Huelva, Spain) and the eutrophic Brunita pit lake (Murcia, Spain). Physicochemical parameters were monitored during 18 months, and the microbial community composition was determined at the end of incubation through 16S rRNA gene amplicon sequencing. SEM-EDX analysis of sediments and suspended particulate matter was performed to investigate the microbially-induced mineral (neo)formation. Glycerol amendment strongly triggered biosulfidogenesis in all ICs, with pH increase and metal sulfide formation, but the effect was much more pronounced in the ICs from oligotrophic systems. Analysis of the microbial community composition at the end of the incubations showed that the SRB Desulfosporosinus was among the dominant taxa observed in all sulfidogenic columns, whereas the SRB Desulfurispora, Desulfovibrio and Acididesulfobacillus appeared to be more site-specific. Formation of Fe3+ and Al3+ (oxy)hydroxysulfates was observed during the initial phase of incubation together with increasing pH while formation of metal sulfides (predominantly, Zn, Fe and Cu sulfides) was observed after 1-5 months of incubation. Chemical analysis of the aqueous phase at the end of incubation showed almost complete removal of dissolved metals (Cu, Zn, Cd) in the amended ICs, while Fe and SO4 2- increased towards the water-sediment interface, likely as a result of the reductive dissolution of Fe(III) minerals enhanced by Fe-reducing bacteria. The combined geochemical and microbiological analyses further establish the link between biosulfidogenesis and natural attenuation through metal sulfide formation and proton consumption.

2.
Bioresour Technol ; 267: 401-407, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30031279

RESUMO

This study constitutes the first-proof-of-concept of a methane biorefinery based on the multi-production of high profit margin substances (ectoine, hydroxyectoine, polyhydroxyalkanoates (PHAs) and exopolysaccharides (EPS)) using methane as the sole carbon and energy source. Two bubble column bioreactors were operated under different magnesium concentrations (0.2, 0.02 and 0.002 g L-1) to validate and optimize this innovative strategy for valorization of CH4 emissions. High Mg2+ concentrations promoted the accumulation of ectoine (79.7-94.2 mg g biomass-1), together with high hydroxyectoine yields (up to 13 mg g biomass-1) and EPS concentrations (up to 2.6 g L culture broth-1). Unfortunately, PHA synthesis was almost negligible (14.3 mg L-1) and only found at the lowest Mg2+ concentration tested. Halomonas, Marinobacter, Methylophaga and Methylomicrobium, previously described as ectoine producers, were dominant in both bioreactors, Methylomicrobium being the only described methanotroph. This study encourages further research on CH4 biorefineries capable of creating value out of GHG mitigation.


Assuntos
Reatores Biológicos , Extremófilos , Metano/metabolismo , Biomassa , Methylococcaceae
3.
Adv Appl Microbiol ; 77: 41-70, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22050821

RESUMO

The recent geomicrobiological characterization of Río Tinto, Iberian Pyrite Belt (IPB), has proven the importance of the iron cycle, not only in generating the extreme conditions of the habitat (low pH, high concentration of toxic heavy metals) but also in maintaining the high level of microbial diversity, both prokaryotic and eukaryotic, detected in the water column and the sediments. The extreme conditions of the Tinto basin are not the product of industrial contamination but the consequence of the presence of an underground bioreactor that obtains its energy from the massive sulfide minerals of the IPB. To test this hypothesis, a drilling project was carried out to intersect ground waters that interact with the mineral ore in order to provide evidence of subsurface microbial activities and the potential resources to support these activities. The oxidants that drive the system appear to come from the rock matrix, contradicting conventional acid mine drainage models. These resources need only groundwater to launch microbial metabolism. There are several similarities between the vast deposits of sulfates and iron oxides on Mars and the main sulfide-containing iron bioleaching products found in the Tinto. Firstly, the short-lived methane detected both in Mars' atmosphere and in the sediments and subsurface of the IPB and secondly, the abundance of iron, common to both. The physicochemical properties of iron make it a source of energy, a shield against radiation and oxidative stress as well as a natural pH controller. These similarities have led to Río Tinto's status as a Mars terrestrial analogue.


Assuntos
Sedimentos Geológicos , Marte , Ecologia , Ecossistema , Sedimentos Geológicos/microbiologia , Concentração de Íons de Hidrogênio , Minerais , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...