Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 190(12): 476, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37993653

RESUMO

There is an urgent need for the harmonization of critical parameters in single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) and they have been deeply studied and optimized in the present work using platinum nanoparticles (PtNPs) as a representative case of study. Special attention has been paid to data processing in order to achieve an adequate discrimination between signals. Thus, a comparison between four different algorithms has been performed and the method for transport efficiency calculation has also been thorougly evaluated (finding the use of a well-characterized solution of the same targeted analyte (30 nm PtNPs) as adequate). The best results have been obtained after the application of a deconvolution approach for the data processing and using 5 ms as dwell time and 40,000 data points for data acquisition. Under the optimized conditions, a correct discrimination between NP events and background signal up to 100 or 750 ng L-1 of added ionic Pt was reached for 30 and 50 nm PtNPs, respectively. The suitability of the developed method for the characterization of PtNPs in relevant environmental (water samples) and biological (cell culture media) matrices has also been demonstrated.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Espectrometria de Massas/métodos , Platina/química , Análise Espectral
2.
Anal Bioanal Chem ; 415(11): 2113-2120, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36604335

RESUMO

Electrical asymmetric-flow field-flow fractionation (EAF4) is a new and interesting analytical technique recently proposed for the characterization of metallic nanoparticles (NPs). It has the potential to simultaneously provide relevant information about size and electrical parameters, such as electrophoretic mobility (µ) and zeta-potential (ζ), of individual NP populations in an online instrumental setup with an array of detectors. However, several chemical and instrumental conditions involved in this technique are definitely influential, and only few applications have been proposed until now. In the present work, an EAF4 system has been used with different detectors, ultraviolet-visible (UV-vis), multi-angle light scattering (MALS), and inductively coupled plasma with triple quadrupole mass spectrometry (ICP-TQ-MS) for the characterization of gold, silver, and platinum NPs with both citrate and phosphate coatings. The behavior of NPs has been studied in terms of retention time and signal intensity under both positive and negative current with results depending on the coating. Carrier composition, particularly ionic strength, was found to be critical to achieve satisfactory recoveries and a reliable measurement of electrical parameters. Dynamic light scattering (DLS) has been used as a comparative technique for these parameters. The NovaChem surfactant mix (0.01%) showed a quantitative recovery (93 ± 1%) of the membrane, but the carrier had to be modified by increasing the ionic strength with 200 µM of Na2CO3 to achieve consistent µ values. However, ζ was one order of magnitude lower in EAF4-UV-vis-MALS than in DLS, probably due to different electric processes in the channel. From a practical point of view, EAF4 technique is still in its infancy and further studies are necessary for a robust implementation in the characterization of NPs.

3.
Sci Total Environ ; 861: 160686, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36481159

RESUMO

Once released to the environment, platinum nanoparticles (PtNPs) can undergo different transformations and are affected by several environmental conditions. An only analytical technique cannot provide all the information required to understand those complex processes, so new analytical developments are demanded. In the present work, the potential of asymmetric flow field flow fractionation hyphenated to inductively coupled plasma mass spectrometry (AF4-ICP-MS) for these studies, has been investigated, and classical dynamic and electrophoretic light scattering (DLS & ELS) have been used as complementary techniques. The role of ionic strength, ionic water composition, and natural organic matter (NOM) in the behaviour of PtNPs of different sizes (5 and 50 nm) has been specifically studied. Dynamic and electrophoretic light scattering have been used to track changes in the hydrodynamic diameters (dh) and polydispersity index (PdI) for 50 nm PtNPs (5 nm cannot be studied by DLS) and Z-potential values (for all sizes) to monitor aggregation. AF4-ICP-MS has been also employed to have a solid insight of aggregation at low environmental concentrations for different sizes of PtNPs simultaneously. The information gathered with those techniques was useful to observe changes as the ionic strength increases, which induces aggregation. Also, it was observed that this aggregation process was attenuated in the presence of organic matter. This approach, based on complementary analytical techniques, is needed for a comprehensive study of such complex interactions of NPs in the environment. AF4-ICP-MS is still under-exploited but shows a great potential for this purpose, especially low size NPs and concentrations.


Assuntos
Fracionamento por Campo e Fluxo , Nanopartículas Metálicas , Nanopartículas Metálicas/química , Platina , Tamanho da Partícula , Análise Espectral , Fracionamento por Campo e Fluxo/métodos
4.
Talanta ; 222: 121513, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33167224

RESUMO

An analytical methodology based on asymmetric flow field flow fractionation hyphenated to inductively coupled plasma mass spectrometry (AF4-ICP-MS) has been developed for monitoring citrate coated platinum nanoparticles (PtNPs) of different sizes (5, 30, and 50 nm) in water samples. Several factors have been optimized, such as carrier composition, AF4 separation program, focusing step or cross flow values. Under the optimum conditions, PtNPs can be fractionated in about 30 min in a single run with quantitative recoveries of the membrane (100 ± 7%, n = 5). The optimized method has been successfully applied to study transformations, not only in size but also surface modifications, of PtNPs in synthetic and natural water samples over time. The effect of organic matter was specifically studied, and it was found to be a critical parameter. The analytical strategy followed in this work can be very useful to develop further environmental studies involving PtNPs.

5.
Talanta ; 179: 442-447, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29310258

RESUMO

Hybrid nanocomposites based on Fe3O4 magnetic nanoparticles (MNPs) coated with different types of carbon nanotubes (CNTs) have been studied for the first time as sorbent materials for magnetic solid phase extraction (MSPE) for mercury speciation analysis. Monomethylmercury (MMHg) was the target mercury species in water samples and the adsorption and desorption processes were optimized based on this species. Single-walled CNT-MNP showed higher adsorption capacity than double-walled or multi-walled CNTs. Then, the magnetic sorbent was retrieved with an external magnet and MMHg was selectively desorbed from it with dichloromethane (DCM) in two steps with vortex agitation. Inorganic mercury was removed during the desorption stage. The rapid adsorption and desorption equilibrium, the magnetic separation of the sorbent, and the simple and fast synthesis of CNT-MNPs without any additional modification of the CNTs simplified and shortened the extraction procedure. The extract was submitted to derivatization of the mercury species by ethylation (with an optional nitrogen stream evaporation of the organic phase) and injection into a gas chromatograph coupled to an atomic fluorescence detector (GC-pyro-AFS). The overall procedure provides the preconcentration of MMHg up to 150 times and the removal of inorganic mercury at the same time. The procedural limits of detection (LOD) and quantification (LOQ) were 5.4 and 17.9pgmL-1, respectively. Moreover, magnetic nanocomposites can be reused at least 7 times without losing their efficiency. The methodology was validated in tap, dam and river water samples to evaluate the performance under real conditions with recoveries from 79% to 97% of spiked MMHg.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...