Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nucleic Acids Res ; 48(D1): D1164-D1170, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31740968

RESUMO

The Standard European Vector Architecture 3.0 database (SEVA-DB 3.0, http://seva.cnb.csic.es) is the update of the platform launched in 2013 both as a web-based resource and as a material repository of formatted genetic tools (mostly plasmids) for analysis, construction and deployment of complex bacterial phenotypes. The period between the first version of SEVA-DB and the present time has witnessed several technical, computational and conceptual advances in genetic/genomic engineering of prokaryotes that have enabled upgrading of the utilities of the updated database. Novelties include not only a more user-friendly web interface and many more plasmid vectors, but also new links of the plasmids to advanced bioinformatic tools. These provide an intuitive visualization of the constructs at stake and a range of virtual manipulations of DNA segments that were not possible before. Finally, the list of canonical SEVA plasmids is available in machine-readable SBOL (Synthetic Biology Open Language) format. This ensures interoperability with other platforms and affords simulations of their behaviour under different in vivo conditions. We argue that the SEVA-DB will remain a useful resource for extending Synthetic Biology approaches towards non-standard bacterial species as well as genetically programming new prokaryotic chassis for a suite of fundamental and biotechnological endeavours.


Assuntos
Bactérias/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Engenharia Genética , Vetores Genéticos , Clonagem Molecular , Europa (Continente) , Software , Navegador
3.
J Biol Chem ; 291(18): 9513-25, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26887939

RESUMO

Heterotrimeric G proteins play an essential role in the initiation of G protein-coupled receptor (GPCR) signaling through specific interactions with a variety of cellular effectors. We have recently reported that GPCR activation promotes a direct interaction between Gαq and protein kinase C ζ (PKCζ), leading to the stimulation of the ERK5 pathway independent of the canonical effector PLCß. We report herein that the activation-dependent Gαq/PKCζ complex involves the basic PB1-type II domain of PKCζ and a novel interaction module in Gαq different from the classical effector-binding site. Point mutations in this Gαq region completely abrogate ERK5 phosphorylation, indicating that Gαq/PKCζ association is required for the activation of the pathway. Indeed, PKCζ was demonstrated to directly bind ERK5 thus acting as a scaffold between Gαq and ERK5 upon GPCR activation. The inhibition of these protein complexes by G protein-coupled receptor kinase 2, a known Gαq modulator, led to a complete abrogation of ERK5 stimulation. Finally, we reveal that Gαq/PKCζ complexes link Gαq to apoptotic cell death pathways. Our data suggest that the interaction between this novel region in Gαq and the effector PKCζ is a key event in Gαq signaling.


Assuntos
Apoptose/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase C/metabolismo , Animais , Células CHO , Células COS , Chlorocebus aethiops , Cricetinae , Cricetulus , Quinases de Receptores Acoplados a Proteína G/genética , Quinases de Receptores Acoplados a Proteína G/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Células HeLa , Humanos , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Fosforilação/fisiologia , Ligação Proteica , Proteína Quinase C/genética
4.
Cell Signal ; 26(5): 833-48, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24440667

RESUMO

In the last few years the interactome of Gαq has expanded considerably, contributing to improve our understanding of the cellular and physiological events controlled by this G alpha subunit. The availability of high-resolution crystal structures has led the identification of an effector-binding region within the surface of Gαq that is able to recognise a variety of effector proteins. Consequently, it has been possible to ascribe different Gαq functions to specific cellular players and to identify important processes that are triggered independently of the canonical activation of phospholipase Cß (PLCß), the first identified Gαq effector. Novel effectors include p63RhoGEF, that provides a link between G protein-coupled receptors and RhoA activation, phosphatidylinositol 3-kinase (PI3K), implicated in the regulation of the Akt pathway, or the cold-activated TRPM8 channel, which is directly inhibited upon Gαq binding. Recently, the activation of ERK5 MAPK by Gq-coupled receptors has also been described as a novel PLCß-independent signalling axis that relies upon the interaction between this G protein and two novel effectors (PKCζ and MEK5). Additionally, the association of Gαq with different regulatory proteins can modulate its effector coupling ability and, therefore, its signalling potential. Regulators include accessory proteins that facilitate effector activation or, alternatively, inhibitory proteins that downregulate effector binding or promote signal termination. Moreover, Gαq is known to interact with several components of the cytoskeleton as well as with important organisers of membrane microdomains, which suggests that efficient signalling complexes might be confined to specific subcellular environments. Overall, the complex interaction network of Gαq underlies an ever-expanding functional diversity that puts forward this G alpha subunit as a major player in the control of physiological functions and in the development of different pathological situations.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Microambiente Celular , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Humanos , MAP Quinase Quinase 5/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipase C beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Proteína rhoA de Ligação ao GTP/metabolismo
5.
PLoS One ; 8(12): e84174, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24358341

RESUMO

G-protein-coupled receptors (GPCRs) are known to activate both G protein- and ß-arrestin-dependent signalling cascades. The initiation of mitogen-activated protein kinase (MAPK) pathways is a key downstream event in the control of cellular functions including proliferation, differentiation, migration and apoptosis. Both G proteins and ß-arrestins have been reported to mediate context-specific activation of ERK1/2, p38 and JNK MAPKs. Recently, the activation of ERK5 MAPK by Gq-coupled receptors has been described to involve a direct interaction between Gαq and two novel effectors, PKCζ and MEK5. However, the possible contribution of ß-arrestin towards this pathway has not yet been addressed. In the present work we sought to investigate the role of receptor internalization processes and ß-arrestin recruitment in the activation of ERK5 by Gq-coupled GPCRs. Our results show that ERK5 activation is independent of M1 or M3 muscarinic receptor internalization. Furthermore, we demonstrate that phosphorylation-deficient muscarinic M1 and M3 receptors are still able to fully activate the ERK5 pathway, despite their reported inability to recruit ß-arrestins. Indeed, the overexpression of Gαq, but not that of ß-arrestin1 or ß-arrestin2, was found to potently enhance ERK5 activation by GPCRs, whereas silencing of ß-arrestin2 expression did not affect the activation of this pathway. Finally, we show that a ß-arrestin-biased mutant form of angiotensin II (SII; Sar1-Ile4-Ile8 AngII) failed to promote ERK5 phosphorylation in primary cardiac fibroblasts, as compared to the natural ligand. Overall, this study shows that the activation of ERK5 MAPK by model Gq-coupled GPCRs does not depend on receptor internalization, ß-arrestin recruitment or receptor phosphorylation but rather is dependent on Gαq-signalling.


Assuntos
Arrestinas/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Receptores Muscarínicos/metabolismo , Animais , Linhagem Celular , Ativação Enzimática , Fibroblastos/metabolismo , Camundongos , Fosforilação , Transdução de Sinais , beta-Arrestinas
6.
J Biol Chem ; 287(10): 7792-802, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22232556

RESUMO

Gq-coupled G protein-coupled receptors (GPCRs) mediate the actions of a variety of messengers that are key regulators of cardiovascular function. Enhanced Gα(q)-mediated signaling plays an important role in cardiac hypertrophy and in the transition to heart failure. We have recently described that Gα(q) acts as an adaptor protein that facilitates PKCζ-mediated activation of ERK5 in epithelial cells. Because the ERK5 cascade is known to be involved in cardiac hypertrophy, we have investigated the potential relevance of this pathway in cardiovascular Gq-dependent signaling using both cultured cardiac cell types and chronic administration of angiotensin II in mice. We find that PKCζ is required for the activation of the ERK5 pathway by Gq-coupled GPCR in neonatal and adult murine cardiomyocyte cultures and in cardiac fibroblasts. Stimulation of ERK5 by angiotensin II is blocked upon pharmacological inhibition or siRNA-mediated silencing of PKCζ in primary cultures of cardiac cells and in neonatal cardiomyocytes isolated from PKCζ-deficient mice. Moreover, upon chronic challenge with angiotensin II, these mice fail to promote the changes in the ERK5 pathway, in gene expression patterns, and in hypertrophic markers observed in wild-type animals. Taken together, our results show that PKCζ is essential for Gq-dependent ERK5 activation in cardiomyocytes and cardiac fibroblasts and indicate a key cardiac physiological role for the Gα(q)/PKCζ/ERK5 signaling axis.


Assuntos
Fibroblastos/enzimologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Miocárdio/enzimologia , Miócitos Cardíacos/enzimologia , Proteína Quinase C-épsilon/metabolismo , Angiotensina II/farmacologia , Animais , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Fibroblastos/citologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Mutantes , Proteína Quinase 7 Ativada por Mitógeno/genética , Miocárdio/citologia , Miócitos Cardíacos/citologia , Proteína Quinase C-épsilon/genética , Vasoconstritores/farmacologia
7.
J Biol Chem ; 285(18): 13480-9, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20200162

RESUMO

G(q)-coupled G protein-coupled receptors (GPCR) mediate the actions of a variety of messengers that are key regulators of different cellular functions. These receptors can regulate a highly interconnected network of biochemical routes that control the activity of several members of the mitogen-activated protein kinase (MAPK) family. The ERK5 MAPK has been shown to be activated by G(q)-coupled GPCR via unknown mechanisms. We find that the atypical protein kinase C (PKCzeta), previously reported to interact with the ERK5 activator MEK5 and to be involved in epidermal growth factor-mediated ERK5 stimulation, plays a crucial role in the activation of the ERK5 pathway by G(q)-coupled GPCR. Stimulation of ERK5 by G(q)-coupled GPCR is abolished upon pharmacological inhibition of PKCzeta as well as in embryonic fibroblasts obtained from PKCzeta-deficient mice. Both PKCzeta and MEK5 associate to G alpha(q) upon activation of GPCR, thus forming a ternary complex that seems essential for the activation of ERK5. These data put forward a novel function of G alpha(q) as a scaffold protein involved in the modulation of the ERK5 cascade by GPCR that could be relevant in G(q)-mediated physiological functions.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Complexos Multiproteicos/metabolismo , Proteína Quinase C/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Células COS , Chlorocebus aethiops , Embrião de Mamíferos/metabolismo , Ativação Enzimática/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Humanos , MAP Quinase Quinase 5/genética , MAP Quinase Quinase 5/metabolismo , Camundongos , Camundongos Mutantes , Proteína Quinase 7 Ativada por Mitógeno/genética , Complexos Multiproteicos/genética , Células NIH 3T3 , Proteína Quinase C/genética , Estrutura Quaternária de Proteína , Receptores Acoplados a Proteínas G/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...