Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 13(11)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531932

RESUMO

In this paper, the photoluminescence (PL) of hydrogenated amorphous silicon carbide (a-Si1-xCx:H) thin films obtained by Plasma Enhancement Chemical Vapor Deposition (PECVD) is reported. Strong PL is obtained after a fast annealing process for 60 s at temperatures of 200, 400, 600, and 800 °C. The thin films are characterized using Fourier Transform Infrared spectroscopy (FTIR), PL spectroscopy, and Energy-Dispersive X-ray Spectroscopy (EDS). According to the results of the structural characterization, it is deduced that a structural rearrangement of the amorphous matrix is carried out during the fast annealing process, which results in different degrees of oxidation on the a-Si1-xCx:H films. The PL peak position shifts towards higher energies as the temperature increases. The sample deposited with a silane/methane flux ratio of 37.5 at an Radio Frequency (RF) power of 6 W experiences an increase in PL intensity of more than nine times, with a displacement in the peak position from 2.5 eV to 2.87 eV, at 800 °C. From the PL analysis, we observe two emission bands: one centered in the near infrared and other in the visible range (with a blue peak). This study opens the possibility to use such thin films in the development of optoelectronics devices, with potential for application in solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA