Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Kidney Int ; 105(4): 824-834, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38280517

RESUMO

In Mexico, chronic kidney disease of unknown origin is highly prevalent. Screening studies in adolescents have shown persistent microalbuminuria (pACR), adaptive podocytopathy and decreased kidney volume (KV). Here, we sought to develop normality tables of kidney dimensions by ultrasound in the Mexican state of Aguascalientes pediatric population (0 to 18y) and evaluate the relationship between the KV and pACR among the region's adolescents in a cross-sectional study. Kidney length (KL) and KV were determined by ultrasound. Our findings were compared with those in international literature of different populations where tables and graphs of normal kidney dimensions by ultrasound were reported. We compared organ dimensions in individuals above the age of 11 without albuminuria with those in patients with pACR recruited through screening studies in adolescents in Aguascalientes. This included 1068 individuals to construct percentile tables and graphs of the KL. Kidney dimensions were significantly lower when compared with all international comparisons. From a total 14,805 screen individuals, we compared 218 adolescents with pACR and 377 individuals without significant albuminuria. The Total KV adjusted to body surface (TKVBS) was significantly associated with pACR (odds ratio 1.03, 95% confidence interval 1.02-1.03). The upper quartile of TKVBS was highly associated with pACR (7.57, 4.13-13.87), hypertension (2.53, 1.66-3.86), and hyperfiltration (26 vs 11.5%). Thus, TKVBS is directly associated with pACR while greater KV, arterial hypertension, and hyperfiltration in patients with pACR suggest that the increase in volume is secondary to kidney hypertrophy. Additionally, the adaptative podocytopathy with low fibrosis seen on kidney biopsy which was performed in a subset of patients, and the smaller kidney dimensions in our population point to prenatal oligonephronia as the primary cause of the detected kidney disease.


Assuntos
Hipertensão , Insuficiência Renal Crônica , Humanos , Criança , Adolescente , Albuminúria/diagnóstico , Albuminúria/epidemiologia , Albuminúria/etiologia , Estudos Transversais , México/epidemiologia , Taxa de Filtração Glomerular , Rim/patologia , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/complicações , Hipertensão/patologia
2.
Sci Data ; 10(1): 745, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891169

RESUMO

The United States of America has a diverse collection of freshwater mussels comprising 301 species distributed among 59 genera and two families (Margaritiferidae and Unionidae), each having a unique suite of traits. Mussels are among the most imperilled animals and are critical components of their ecosystems, and successful management, conservation and research requires a cohesive and widely accessible data source. Although trait-based analysis for mussels has increased, only a small proportion of traits reflecting mussel diversity in this region has been collated. Decentralized and non-standardized trait information impedes large-scale analysis. Assembling trait data in a synthetic dataset enables comparison across species and lineages and identification of data gaps. We collated data from the primary literature, books, state and federal reports, theses and dissertations, and museum collections into a centralized dataset covering information on taxonomy, morphology, reproductive ecology and life history, fish hosts, habitats, thermal tolerance, geographic distribution, available genetic information, and conservation status. By collating these traits, we aid researchers in assessing variation in mussel traits and modelling ecosystem change.


Assuntos
Bivalves , Unionidae , Animais , Ecossistema , Água Doce , Filogenia , Unionidae/genética , Estados Unidos
3.
Front Microbiol ; 13: 800061, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444631

RESUMO

The Asian clam Corbicula fluminea (Family: Cyneridae) has aggressively invaded freshwater habitats worldwide, resulting in dramatic ecological changes and declines of native bivalves such as freshwater mussels (Family: Unionidae), one of the most imperiled faunal groups. Despite increases in our knowledge of invasive C. fluminea biology, little is known of how intrinsic and extrinsic factors, including co-occurring native species, influence its microbiome. We investigated the gut bacterial microbiome across genetically differentiated populations of C. fluminea in the Tennessee and Mobile River Basins in the Southeastern United States and compared them to those of six co-occurring species of native freshwater mussels. The gut microbiome of C. fluminea was diverse, differed with environmental conditions and varied spatially among rivers, but was unrelated to host genetic variation. Microbial source tracking suggested that the gut microbiome of C. fluminea may be influenced by the presence of co-occurring native mussels. Inferred functions from 16S rRNA gene data using PICRUST2 predicted a high prevalence and diversity of degradation functions in the C. fluminea microbiome, especially the degradation of carbohydrates and aromatic compounds. Such modularity and functional diversity of the microbiome of C. fluminea may be an asset, allowing to acclimate to an extensive range of nutritional sources in invaded habitats, which could play a vital role in its invasive success.

4.
Ecol Evol ; 12(3): e8737, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35342574

RESUMO

This study aimed to identify the importance of ecological factors to distribution patterns of the invasive Clam (Corbicula fluminea) relative to native mussels (family: Unionidae) across seven rivers within the Mobile and Tennessee basins, Southeast United States. We quantitatively surveyed dense, diverse native mussel aggregations across 20 river reaches and estimated mussel density, biomass, and species richness along with density of invasive C. fluminea (hereafter Corbicula). We measured substrate particle size, velocity, and depth in quadrats where animals were collected. Additionally, we characterized reach scale environmental parameters including seston quantity and quality (% Carbon, % Nitrogen, % Phosphorous), water chemistry (ammonium [ NH 4 + ], soluble reactive phosphorous [SRP]), and watershed area and land cover. Using model selection, logistic regression, and multivariate analysis, we characterized habitat features and their association to invasive Corbicula within mussel beds. We found that Corbicula were more likely to occur and more abundant in quadrats with greater mussel biomass, larger substrate size, faster water velocity, and shallower water depth. At the reach scale, Corbicula densities increased where particle sizes were larger. Mussel richness, density, and biomass increased with watershed area. Water column NH 4 + increased at reaches with more urban land cover. No land cover variables influenced Corbicula populations or mussel communities. The strong overlapping distribution of Corbicula and mussels support the hypothesis that Corbicula are not necessarily limited by habitat factors and may be passengers of change in rivers where mussels have declined due to habitat degradation. Whether Corbicula is facilitated by mussels or negatively interacts with mussels in these systems remains to be seen. Focused experiments that manipulate patch scale variables would improve our understanding of the role of species interactions (e.g., competition, predation, facilitation) or physical habitat factors in influencing spatial overlap between Corbicula and native mussels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...