Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 9: 3028, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30581428

RESUMO

Plant surfaces are known as an important sink for various air pollutants, including particulate matter and its associated potentially toxic elements (PTE). Moreover, leaves surface or phylloplane is a habitat that harbors diverse bacterial communities (epiphytic). However, little is known about their possible functions during phytoremediation of air pollutants like PTE. The study of leaf epiphytic bacteria of plants colonizing mine residues (MR) containing PTE is thus a key to understand and exploit plant-epiphytic bacteria interactions for air phytoremediation purposes. In this research, we aimed (i) to characterize the functions of epiphytic bacteria isolated from the phylloplane of Brickellia veronicifolia, Flaveria trinervia, Gnaphalium sp., and Allionia choisyi growing spontaneously on multi-PTE contaminated MR and (ii) to compare these against the same plant species in a non-polluted control site (NC). Concentrations (mg kg-1) of PTE on MR leaf surfaces of A. choisyi reached up to 232 for Pb, 13 for Cd, 2,728 for As, 52 for Sb, 123 for Cu in F. trinervia, and 269 for Zn in Gnaphalium sp. In the four plant species, the amount of colony-forming units per cm2 was superior in MR leaves than in NC ones, being A. choisyi the plant species with the highest value. Moreover, the proportion of isolates tolerant to PTE (Zn, Cu, Cd, and Sb), UV light, and drought was higher in MR leaves than in those in NC. Strain BA15, isolated from MR B. veronicifolia, tolerated 150 mg Zn L-1, 30 mg Sb L-1, 25 mg Cu L-1; 80 mg Pb L-1, and was able to grow after 12 h of continuous exposition to UV light and 8 weeks of drought. Plant growth promotion related traits [N fixation, indole acetic acid (IAA) production, and phosphate solubilization] of bacterial isolates varied among plant species isolates and between MR and NC sampling condition. The studied epiphytic isolates possess functions interesting for phytoremediation of air pollutants. The results of this research may contribute to the development of novel and more efficient inoculants for microbe-assisted phytoremediation applied to improve air quality in areas exposed to the dispersion of metal mine tailings.

2.
Int J Mol Sci ; 19(1)2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29351192

RESUMO

Metal contaminated soils are increasing worldwide. Metal-tolerant plants growing on metalliferous soils are fascinating genetic and microbial resources. Seeds can vertically transmit endophytic microorganisms that can assist next generations to cope with environmental stresses, through yet poorly understood mechanisms. The aims of this study were to identify the core seed endophyte microbiome of the pioneer metallophyte Crotalaria pumila throughout three generations, and to better understand the plant colonisation of the seed endophyte Methylobacterium sp. Cp3. Strain Cp3 was detected in C. pumila seeds across three successive generations and showed the most dominant community member. When inoculated in the soil at the time of flowering, strain Cp3 migrated from soil to seeds. Using confocal microscopy, Cp3-mCherry was demonstrated to colonise the root cortex cells and xylem vessels of the stem under metal stress. Moreover, strain Cp3 showed genetic and in planta potential to promote seed germination and seedling development. We revealed, for the first time, that the seed microbiome of a pioneer plant growing in its natural environment, and the colonisation behaviour of an important plant growth promoting systemic seed endophyte. Future characterization of seed microbiota will lead to a better understanding of their functional contribution and the potential use for seed-fortification applications.


Assuntos
Crotalaria/microbiologia , Methylobacterium/metabolismo , Microbiota/genética , Sementes/microbiologia , Crotalaria/crescimento & desenvolvimento , Crotalaria/metabolismo , Endófitos/crescimento & desenvolvimento , Endófitos/metabolismo , Poluição Ambiental , Metais/metabolismo , Metais/toxicidade , Desenvolvimento Vegetal , Raízes de Plantas/química , Sementes/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Simbiose
3.
Environ Pollut ; 205: 33-42, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26002581

RESUMO

Retention of particles containing potentially toxic elements (PTEs) on plants that spontaneously colonize mine tailings was studied through comparison of washed and unwashed shoot samples. Zn, Pb, Cd, Cu, Ni, Co and Mn concentrations were determined in plant samples. Particles retained on leaves were examined by Scanning Electronic Microscopy and energy dispersive X-Ray analysis. Particles containing PTEs were detected on both washed and unwashed leaves. This indicates that the thorough washing procedure did not remove all the particles containing PTEs from the leaf surface, leading to an overestimation of the concentrations of PTEs in plant tissues. Particularly trichomes and fungal mycelium were retaining particles. The quantity and composition of particles varied among plant species and place of collection. It is obvious that plants growing on toxic mine tailings form a physical barrier against particle dispersion and hence limit the spread of PTEs by wind.


Assuntos
Metais Pesados/metabolismo , Mineração , Plantas/metabolismo , Poluentes do Solo/metabolismo , Monitoramento Ambiental , Fungos/metabolismo , Metais Pesados/análise , Metais Pesados/química , México , Microscopia Eletrônica de Varredura , Micélio/metabolismo , Brotos de Planta/metabolismo , Plantas/microbiologia , Poluentes do Solo/análise , Poluentes do Solo/química
4.
Int J Phytoremediation ; 17(1-6): 476-84, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25495938

RESUMO

The aim of this research was to identify wild plant species applicable for remediation of mine tailings in arid soils. Plants growing on two mine tailings were identified and evaluated for their potential use in phytoremediation based on the concentration of potentially toxic elements (PTEs) in roots and shoots, bioconcentration (BCF) and translocation factors (TF). Total, water-soluble and DTPA-extractable concentrations of Pb, Cd, Zn, Cu, Co and Ni in rhizospheric and bulk soil were determined. Twelve species can grow on mine tailings, accumulate PTEs concentrations above the commonly accepted phytotoxicity levels, and are suitable for establishing a vegetation cover on barren mine tailings in the Zimapan region. Pteridium sp. is suitable for Zn and Cd phytostabilization. Aster gymnocephalus is a potential phytoextractor for Zn, Cd, Pb and Cu; Gnaphalium sp. for Cu and Crotalaria pumila for Zn. The species play different roles according to the specific conditions where they are growing at one site behaving as a PTEs accumulator and at another as a stabilizer. For this reason and due to the lack of a unified approach for calculation and interpretation of bioaccumulation factors, only considering BCF and TF may be not practical in all cases.


Assuntos
Metais/metabolismo , Plantas/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Metais/análise , México , Mineração , Plantas/química , Plantas/classificação , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...