Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 916: 170326, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266720

RESUMO

Seawater desalination by reverse osmosis is growing exponentially due to water scarcity. Byproducts of this process (e.g. brines), are generally discharged directly into the coastal ecosystem, causing detrimental effects, on benthic organisms. Understanding the cellular stress response of these organisms (biomarkers), could be crucial for establishing appropriate salinity thresholds for discharged brines. Early stress biomarkers can serve as valuable tools for monitoring the health status of brine-impacted organisms, enabling the prediction of long-term irreversible damage caused by the desalination industry. In this study, we conducted laboratory-controlled experiments to assess cellular and molecular biomarkers against brine exposure in two salinity-sensitive Mediterranean seagrasses: Posidonia oceanica and Cymodocea nodosa. Treatments involved exposure to 39, 41, and 43 psu, for 6 h and 7 days. Results indicated that photosynthetic performance remained unaffected across all treatments. However, under 43 psu, P. oceanica and C. nodosa exhibited lipid oxidative damage, which occurred earlier in P. oceanica. Additionally, P. oceanica displayed an antioxidant response at higher salinities by accumulating phenolic compounds within 6 h and ascorbate within 7 d; whereas for C. nodosa the predominant antioxidant mechanisms were phenolic compounds accumulation and total radical scavenging activity, which was evident after 7 d of brines exposure. Finally, transcriptomic analyses in P. oceanica exposed to 43 psu for 7 days revealed a poor up-regulation of genes associated with brassinosteroid response and abiotic stress response, while a high down-regulation of genes related to primary metabolism was detected. In C. nodosa, up-regulated genes were involved in DNA repair, cell cycle regulation, and reproduction, while down-regulated genes were mainly associated with photosynthesis and ribosome assembly. Overall, these findings suggest that 43 psu is a critical salinity-damage threshold for both seagrasses; and despite the moderate overexpression of several transcripts that could confer salt tolerance, genes involved in essential biological processes were severely downregulated.


Assuntos
Alismatales , Ecossistema , Sais , Antioxidantes/metabolismo , Alismatales/fisiologia , Perfilação da Expressão Gênica , Mar Mediterrâneo
2.
Chemosphere ; 341: 140061, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37689149

RESUMO

Desalination has been proposed as a global strategy for tackling freshwater shortage in the climate change era. However, there is a concern regarding the environmental effects of high salinity brines discharged from desalination plants on benthic communities. In this context, seagrasses such as the Mediterranean endemic and ecologically important Posidonia oceanica have shown high vulnerability to elevated salinities. Most ecotoxicological studies regarding desalination effects are based on salinity increments using artificial sea salts, although it has been postulated that certain additives within the industrial process of desalination may exacerbate a negative impact beyond just the increased salinities of the brine. To assess the potential effect of whole effluent brines on P. oceanica, mesocosm experiments were conducted within 10 days, simulating salinity increment with either artificial sea salts or brines from a desalination plant (at 43 psµ, 6 psµ over the natural 37 psµ). Morphometrical (growth and necrosis), photochemical (PSII chlorophyll a fluorometry), metabolic, such as hydrogen peroxide (H2O2), thiobarbituric reactive substances (TBARS) and ascorbate/dehydroascorbate (ASC/DHA), and molecular (expression of key tolerance genes) responses were analyzed in each different treatment. Although with a still positive leaf growth, associated parameters decreased similarly for both artificial sea salt and brine treatments. Photochemical parameters did not show general patterns, although only P. oceanica under brines demonstrated greater energy release through heat (NPQ). Lipid peroxidation and upregulation of genes related to oxidative stress (GR, MnSOD, and FeSOD) or ion exclusion (SOS3 and AKT2/3) were similarly incremented on both hypersalinity treatments. Conversely, the ASC/DHA ratio was significantly lower, and the expression of SOS1, CAT, and STRK1 was increased under brine influence. This study revealed that although metabolic and photochemical differences occurred under both hypersalinity treatments, growth (the last sign of physiological detriment) was similarly compromised, suggesting that the potential effects of desalination are mainly caused by brine-associated salinities and are not particularly related to other industrial additives.


Assuntos
Alismatales , Sais , Clorofila A , Peróxido de Hidrogênio , Salinidade , Ácido Ascórbico
3.
Sci Total Environ ; 883: 163538, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37100139

RESUMO

Seagrasses, which are considered among the most ecologically valuable and endangered coastal ecosystems, have a narrowly limited distribution in the south-east Pacific, where Zostera chilensis is the only remaining relict. Due to water scarcity, desalination industry has grown in the last decades in the central-north coasts of Chile, which may be relevant to address in terms of potential impacts on benthic communities due to their associated high-salinity brine discharges to subtidal ecosystems. In this work, we assessed ecophysiological and cellular responses to desalination-extrapolable hypersalinity conditions on Z. chilensis. Mesocosms experiments were performed for 10 days, where plants were exposed to 3 different salinity treatments: 34 psu (control), 37 psu and 40 psu. Photosynthetic performance, H2O2 accumulation, and ascorbate content (reduced and oxidized) were measured, as well as relative gene expression of enzymes related to osmotic regulation and oxidative stress; these, at 1, 3, 6 and 10 days. Z. chilensis showed a decrease in photosynthetic parameters such as electron transport rate (ETRmax) and saturation irradiance (EkETR) under hypersalinity treatments, while non-photochemical quenching (NPQmax) presented an initial increment and a subsequent decline at 40 psu. H2O2 levels increased with hypersalinity, while ascorbate and dehydroascorbate only increased under 37 psu, although decreased along the experimental period. Increased salinities also triggered the expression of genes related to ion transport and osmolyte syntheses, but salinity-dependent up-regulated genes were mostly those related to the reactive oxygen species metabolism. The relict seagrass Z. chilensis has shown to withstand increased salinities that may be extrapolable to desalination effects in the short-term. As the latter is not fully clear in the long-term, and considering the restricted distribution and ecological importance, direct brine discharges to Z. chilensis meadows may not be recommended.


Assuntos
Magnoliopsida , Zosteraceae , Ecossistema , Zosteraceae/metabolismo , Chile , Magnoliopsida/metabolismo , Peróxido de Hidrogênio/metabolismo , Oceano Pacífico , Ácido Ascórbico , Medição de Risco , Salinidade
4.
Plants (Basel) ; 12(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36771541

RESUMO

In the Mediterranean, anthropogenic pressures (specifically those involving nutrient loads) have been progressively moved to deeper off-shore areas to meet current policies dealing with the protection of marine biodiversity (e.g., European Directives). However, conservation efforts devoted to protecting Posidonia oceanica and other vulnerable marine habitats against anthropogenic pressures have dedicated very little attention to the deepest areas of these habitats. We studied the remote influence of off-shore nutrient discharge on the physiology and structure of deep P. oceanica meadows located nearest to an urban sewage outfall (WW; 1 km) and an aquaculture facility (FF; 2.5 km). Light reduction and elevated external nutrient availability (as indicated by high δ15N, total N and P content and N uptake rates of seagrass tissues) were consistent with physiological responses to light and nutrient stress. This was particularly evident in the sites located up to 2.5 km from the WW source, where carbon budget imbalances and structural alterations were more evident. These results provide evidence that anthropogenic nutrient inputs can surpass critical thresholds for the species, even in off-shore waters at distances within the km scale. Therefore, the critical distances between this priority habitat and nutrient discharge points have been underestimated and should be corrected to achieve a good conservation status.

5.
Mar Environ Res ; 186: 105901, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36753882

RESUMO

Substantial losses of the seagrass Posidonia oceanica have initiated investigations into localized resilience declines related to anthropogenic disturbances. In this study, we determined reconstructed shoot age and interannual growth metrics can detect anthropogenic impact effects on P. oceanica production. Interannual rhizome vertical growth, leaf production, and demographics of shoots collected from sewage and trawling impacted areas were examined using mixed effects modeling. Detected impact effects were specific to the type of impact, manifesting as an older-skewed age distribution of sewage outfall shoots and reduced vertical growth and reduced leaf production of trawling site shoots. A stress event period was also detected for all shoots >5 years old, with trawling impacted shoots indicating little recovery. Reconstructed age and growth metrics are simple to measure, incorporate multiple years of in situ shoot development, and are advantageous for identification of declining P. oceanica resilience prior to catastrophic losses.


Assuntos
Alismatales , Efeitos Antropogênicos , Benchmarking , Esgotos , Folhas de Planta , Mar Mediterrâneo
6.
Mar Environ Res ; 174: 105557, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35042063

RESUMO

Coastal development has an undeniable impact on marine ecosystems resulting in the detriment of the more sensible communities. Posidonia oceanica meadows are climax communities which offer a wide variety of ecosystem services both ecological and socio-economic. Human-derived impact on these habitats has been widely assessed although conclusions may vary depending on the area. P. oceanica meadow regression next to the city of Alicante (SE Spain) was analyzed on the long term (1984-2014) using bionomic cartographies and side-scan sonar images and, during the last two decades (2003-2021), using cover percentage and shoot density descriptors in the remaining meadow. Results showed a 25% colonized area reduction since 1984, this process being more rapid during the 1984-1994 period and decreasing with time. Cover and density have suffered a significant decrease in the last 20 years, mainly in the upper limit of the meadow. Dead matte cover was also assessed and have shown a significant increase in the same period following an inverse trend with the other metrics. There are several coastal impacts which have co-occurred in the area in the last few decades (port enlargement, brine and sewage discharges, industrial activity) thus resulting in the regression of the meadow. The existing negative trend of the measured descriptors indicate the necessity of implementing management actions which focus on the present sources of impact and actively reduce their effect on P. oceanica beds.


Assuntos
Alismatales , Ecossistema , Pradaria , Humanos , Mar Mediterrâneo , Espanha
7.
Sci Rep ; 11(1): 13949, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230528

RESUMO

The aim of this study is to assess the climate effects on fisheries from a bottom-up approach based on fishers' fishing experience, knowledge, and perceptions. To perform this task, a social vulnerability assessment was conducted in two different fishing areas: one in Spain and the other one in Turkey. The vulnerability was measured using the collected data and information through a structured questionnaire, and surveys were carried out among fishers in the Castelló (Spain) and the Aegean Sea (Turkey) between 2018 and 2019. Overall, the results indicated that the two studied regions have a moderate to high vulnerability and that the Aegean Sea was slightly more vulnerable than Castelló. It was also found that storms and temperature are the main climatic stressors that affect the fishing sector, and the economic indicators such as revenue from fishing in both regions showed high degrees of sensitivity. To reduce the vulnerability to climate change, adaptive measures should be implemented while taking into consideration the specific socio-economic and institutional characteristics of each region. In conclusion, the effects of climate change on the fishing sector and their social vulnerability are diverse. Consequently, there is no single climate measure that can minimize the vulnerability of fishing sectors in different regions.

8.
Sci Total Environ ; 758: 143756, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33333301

RESUMO

Despite the crucial role of herbivory in shaping community assembly, our understanding on biogeographical patterns of herbivory on seagrasses is limited compared to that on terrestrial plants. In particular, the drivers of such patterns remain largely unexplored. Here, we used a comparative-experimental approach in Cymodocea nodosa meadows, across all possible climate types within the seagrass distribution, 2000 km and 13° of latitude in two ocean basins, to investigate biogeographical variation in seagrass herbivory intensity and their drivers during July 2014. Particularly, the density and richness of herbivores and their food resources, seagrass size, carbon and nitrogen content, as well as latitude, sea surface temperature, salinity, chlorophyll, and sediment grain size, were tested as potential drivers. We found that shallow meadows can be subjected to intense herbivory, with variation in herbivory largely explained by fish density, seagrass size, and annual sea temperature range. The herbivorous fish density was the most important determinant of such variation, with the dominant seagrass consumer, the fish Sarpa salpa, absent at meadows from regions with low herbivory. In temperate regions where herbivorous fish are present, annual temperature ranges drive an intense summer herbivory, which is likely mediated not only by increased herbivore metabolic demands at higher temperatures, but also by higher fish densities. Invertebrate grazing (mainly by sea urchins, isopods, amphipods, and/or gastropods) was the dominant leaf herbivory in some temperate meadows, with grazing variation mainly influenced by seagrass shoot size. At the subtropical region (under reduced annual temperature range), lower shoot densities and seagrass nitrogen contents contributed to explain the almost null herbivory. We evidenced the combined influence of drivers acting at geographic (region) and local (meadow) scales, the understanding of which is critical for a clear prediction of variation in seagrass herbivory intensity across biogeographical regions.


Assuntos
Alismatales , Perciformes , Animais , Ecossistema , Herbivoria , Invertebrados , Folhas de Planta
9.
Mar Pollut Bull ; 161(Pt B): 111813, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33157504

RESUMO

The environmental impact of desalination is the most important concern related to its sustainable development. We present the results of a long-term environmental plan to monitor brine discharge (BD) from a desalination plant located in a high environmental value area in Spain. Generalized additive models were used to analyze the biological parameters of biological communities. Results of 17 years of BD monitoring show how its environmental impact can be minimized through well-planned decision-making between scientists and industry. The brine dilution prior to its discharge into an artificial channel of low ecological value significantly reduced the brine influence area. P. oceanica shoot production and echinoderms abundances were relatively stable across historical series and similar values in control and impacts locations were observed. Conversely, there was a higher abundance and species richness of fishes in the BD area. The important findings reported here should be considered for future applications in similar projects.


Assuntos
Água do Mar , Purificação da Água , Animais , Osmose , Salinidade , Sais , Espanha
10.
Aquat Toxicol ; 225: 105552, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32615475

RESUMO

There is scarce investigation addressing interpopulation tolerance responses to address the influence of a history of chronic stress exposure, as that occurring in polluted environments, in photoautotrophs. We evaluated ecophysiological (photosynthetic activity) and metabolic (oxidative stress and damage) responses of two populations of green macroalga Ulva compressa from polluted (Ventanas) and non-polluted (Cachagua) localions of central Chile, and exposed to controlled hypersalinity conditions of 32 (control), 42, 62 and 82 psu (practical salinity units) for 6 h, 48 h and 6 d. Both primary production (ETRmax) and photosynthetic efficiency (αETR) were generally higher in the population from Cachagua compared to Ventanas at all times and salinities. Moreover, at most experimental times and salinities the population from Ventanas had greater levels of H2O2 and lipid peroxidation that individuals from Cachagua. Total ascorbate was higher in the population of Cachagua than Ventanas at 42 and 82 psu after 6 and 48 h, respectively, while at 6 d concentrations were similar between both populations at all salinities. Total glutathione was greater in both populations after 6 h at all salinities, but at 48 h its concentrations were higher only in the population from Cachagua, a trend that was maintained at 6 d under 82 psu only. Reduced and oxidized ascorbate (ASC and DHA, respectively) and glutathione (GSH and GSSG, respectively) demonstrated similar patterns between U. compressa populations, with an increase oxidation with greater salinities but efficient recycling to maintain sufficient batch of ASC and GSH. When assessing the expression of antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and dehydroascorbate reductase (DHAR), while the population of Ventanas displayed a general trend of upregulation with increasing salinities along the experiments, U. compressa from Cachagua revealed patterns of downregulation. Results demonstrated that although both populations were still viable after the applied hypersalinities during all experimental times, biological performance was usually more affected in the population from the Ventanas than Cachagua, likely due to a depressed baseline metabolism after a long history of exposition to environmental pollution.


Assuntos
Ulva/fisiologia , Poluentes Químicos da Água/toxicidade , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Catalase/metabolismo , Chile , Poluição Ambiental , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Oxirredução , Estresse Oxidativo , Salinidade , Alga Marinha/metabolismo , Superóxido Dismutase/metabolismo , Ulva/enzimologia
11.
Int J Mol Sci ; 20(18)2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540290

RESUMO

Following the physiological complementary/parallel Celis-Plá et al., by inhibiting extracellular signal regulated kinases (ERK), c-Jun N-terminal kinases (JNK), and cytokinin specific binding protein (p38), we assessed the role of the mitogen-activated protein kinases (MAPK) pathway in detoxification responses mediated by chronic copper (10 µM) in U. compressa. Parameters were taken at 6, 24, and 48 h, and 6 days (d). H2O2 and lipid peroxidation under copper and inhibition of ERK, JNK, or p38 alone increased but recovered by the sixth day. By blocking two or more MAPKs under copper, H2O2 and lipid peroxidation decayed even below controls. Inhibition of more than one MAPK (at 6 d) caused a decrease in total glutathione (reduced glutathione (GSH) + oxidised glutathione (GSSG)) and ascorbate (reduced ascorbate (ASC) + dehydroascorbate (DHA)), although in the latter it did not occur when the whole MAPK was blocked. Catalase (CAT), superoxide dismutase (SOD), thioredoxin (TRX) ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), and glutathione synthase (GS), were downregulated when blocking more than one MAPK pathway. When one MAPK pathway was blocked under copper, a recovery and even enhancement of detoxification mechanisms was observed, likely due to crosstalk within the MAPKs and/or other signalling processes. In contrast, when more than one MAPK pathway were blocked under copper, impairment of detoxification defences occurred, demonstrating that MAPKs were key signalling mechanisms for detoxification in macroalgae.


Assuntos
Clorófitas/fisiologia , Cobre/metabolismo , Sistema de Sinalização das MAP Quinases , Ácido Ascórbico/metabolismo , Biodegradação Ambiental , Clorófitas/metabolismo , Regulação da Expressão Gênica de Plantas , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos
12.
Int J Mol Sci ; 20(18)2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540294

RESUMO

There is currently no information regarding the role that whole mitogen activated protein kinase (MAPK) pathways play in counteracting environmental stress in photosynthetic organisms. To address this gap, we exposed Ulva compressa to chronic levels of copper (10 µM) specific inhibitors of Extracellular Signal Regulated Kinases (ERK), c-Jun N-terminal Kinases (JNK), and Cytokinin Specific Binding Protein (p38) MAPKs alone or in combination. Intracellular copper accumulation and photosynthetic activity (in vivo chlorophyll a fluorescence) were measured after 6 h, 24 h, 48 h, and 6 days of exposure. By day 6, when one (except JNK) or more of the MAPK pathways were inhibited under copper stress, there was a decrease in copper accumulation compared with algae exposed to copper alone. When at least two MAPKs were blocked, there was a decrease in photosynthetic activity expressed in lower productivity (ETRmax), efficiency (αETR), and saturation of irradiance (EkETR), accompanied by higher non-photochemical quenching (NPQmax), compared to both the control and copper-only treatments. In terms of accumulation, once the MAPK pathways were partially or completely blocked under copper, there was crosstalk between these and other signaling mechanisms to enhance metal extrusion/exclusion from cells. Crosstalk occurred among MAPK pathways to maintain photosynthesis homeostasis, demonstrating the importance of the signaling pathways for physiological performance. This study is complemented by a parallel/complementary article Rodríguez-Rojas et al. on the role of MAPKs in copper-detoxification.


Assuntos
Clorófitas/fisiologia , Cobre/metabolismo , Sistema de Sinalização das MAP Quinases , Biodegradação Ambiental , Clorófitas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia
13.
PLoS One ; 12(6): e0178196, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28591205

RESUMO

Ocean warming is already affecting global fisheries with an increasing dominance of catches of warmer water species at higher latitudes and lower catches of tropical and subtropical species in the tropics. Tuna distributions are highly conditioned by sea temperature, for this reason and their worldwide distribution, their populations may be a good indicator of the effect of climate change on global fisheries. This study shows the shift of tuna catches in subtropical latitudes on a global scale. From 1965 to 2011, the percentage of tropical tuna in longliner catches exhibited a significantly increasing trend in a study area that included subtropical regions of the Atlantic and western Pacific Oceans and partially the Indian Ocean. This may indicate a movement of tropical tuna populations toward the poles in response to ocean warming. Such an increase in the proportion of tropical tuna in the catches does not seem to be due to a shift of the target species, since the trends in Atlantic and Indian Oceans of tropical tuna catches are decreasing. Our results indicate that as populations shift towards higher latitudes the catches of these tropical species did not increase. Thus, at least in the Atlantic and Indian Oceans, tropical tuna catches have reduced in tropical areas.


Assuntos
Pesqueiros , Aquecimento Global , Oceanos e Mares , Atum/fisiologia , Animais , Geografia , Modelos Teóricos , Análise Numérica Assistida por Computador , Temperatura , Fatores de Tempo , Clima Tropical
14.
PLoS One ; 11(12): e0168212, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27973538

RESUMO

Information on the distribution and habitat preferences of ecologically and commercially important species is essential for their management and protection. This is especially important as climate change, pollution, and overfishing change the structure and functioning of pelagic ecosystems. In this study, we used Bayesian hierarchical spatial-temporal models to map the Essential Fish Habitats of the Yellowfin tuna (Thunnus albacares) in the waters around Isla del Coco National Park, Pacific Costa Rica, based on independent underwater observations from 1993 to 2013. We assessed if observed changes in the distribution and abundance of this species are related with habitat characteristics, fishing intensity or more extreme climatic events, including the El Niño Southern Oscillation, and changes on the average sea surface temperature. Yellowfin tuna showed a decreasing abundance trend in the sampled period, whereas higher abundances were found in shallow and warmer waters, with high concentration of chlorophyll-a, and in surrounding seamounts. In addition, El Niño Southern Oscillation events did not seem to affect Yellowfin tuna distribution and abundance. Understanding the habitat preferences of this species, using approaches as the one developed here, may help design integrated programs for more efficient management of vulnerable species.


Assuntos
Distribuição Animal , Ecossistema , Atum , Animais , Teorema de Bayes , Clorofila/química , Clorofila A , Mudança Climática , Costa Rica , Pesqueiros , Sistemas de Informação Geográfica , Temperatura , Tempo (Meteorologia)
15.
PLoS One ; 11(12): e0168398, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27992498

RESUMO

The fish Sarpa salpa (L.) is one of the main macroherbivores in the western Mediterranean. Through direct and indirect mechanisms, this herbivore can exert significant control on the structure and functional dynamics of seagrass beds and macroalgae. Past research has suggested nutritional quality of their diet influences S. salpa herbivory, with the fish feeding more intensively and exerting greater top down control on macrophytes with higher internal nutrient contents. However recent findings have questioned this notion and shown that herbivores do not preferentially feed on macrophytes with higher nutrient contents, but rather feed on a wide variety of them with no apparent selectivity. To contribute to this debate, we conducted a field fertilization experiment where we enriched leaves of the seagrass Posidonia oceanica, a staple diet for S. salpa, and examined the response by the herbivore. These responses included quantification of leaf consumption in fertilized and non-fertilized/control plots within the bed, and food choice assays where fertilized and non-fertilized/control leaves were simultaneously offered to the herbivore. Despite the duration of leaf exposure to herbivores (30 days) and abundant schools of S. salpa observed around the plots, leaf consumption was generally low in the plots examined. Consumption was not higher on fertilized than on non-fertilized leaves. Food choice experiments did not show strong evidence for selectivity of enriched leaves. These results add to a recent body of work reporting a broad generalist feeding behavior by S. salpa with no clear selectivity for seagrass with higher nutrient content. In concert, this and other studies suggest S. salpa is often generalist consumers not only dictated by diet nutrient content but by complex interactions between other traits of nutritional quality, habitat heterogeneity within their ample foraging area, and responses to predation risk.


Assuntos
Alismatales/química , Herbivoria/fisiologia , Perciformes/fisiologia , Animais , Valor Nutritivo , Folhas de Planta/química , Comportamento Predatório
16.
Water Res ; 70: 325-36, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25543242

RESUMO

In many regions, seawater desalination is a growing industry that has its impact on benthic communities. This study analyses the effect on benthic communities of a mitigation measure applied to a brine discharge, using polychaete assemblages as indicator. An eight-year study was conducted at San Pedro del Pinatar (SE Spain) establishing a grid of 12 sites at a depth range of 29-38 m during autumn. Brine discharge started in 2006 and produced a significant decrease in abundance, richness and diversity of polychaete families at the location closest to the discharge, where salinity reached 49. In 2010, a diffuser was deployed at the end of the pipeline in order to increase the mixing, to reduce the impact on benthic communities. After implementation of this mitigation measure, the salinity measured close to discharge was less than 38.5 and a significant recovery in polychaete richness and diversity was detected, to levels similar to those before the discharge. A less evident recovery in abundance was also observed, probably due to different recovery rates of polychaete families. Some families like Paraonidae and Magelonidae were more tolerant to this impact. Others like Syllidae and Capitellidae recovered quickly, although still affected by the discharge, while some families such as Sabellidae and Cirratulidae appeared to recover more slowly.


Assuntos
Recuperação e Remediação Ambiental , Poliquetos/efeitos dos fármacos , Água do Mar/análise , Poluentes Químicos da Água/análise , Purificação da Água , Animais , Monitoramento Ambiental , Espanha
17.
Mar Environ Res ; 95: 39-61, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24411277

RESUMO

The differential expression of the plant phenotypic plasticity due to inter- and intraspecific divergences can determine the plant physiological tolerance under stress. In this work, we examined the interspecific ecophysiological plasticity that the main Mediterranean seagrass species with distinct marine environmental distribution (Posidonia oceanica and Cymodocea nodosa) can exhibit in response to hypersaline stress. We also tested the potential implication of ecotypic intraspecific divergences in the development of such plasticities. To this end, plants from shallow (5-7 m) and deep (18-20 m) meadows of both were maintained under two salinity treatments (natural salinity level of 37, and hypersaline treatment of 43; Practical Salinity Scale) during a long-term experiment (i.e. 62 days) developed in a highly controlled mesocosm system. Hypersaline stress caused notable plastic physiological alterations in P. oceanica and C. nodosa, with appreciable inter- and intraspecific differences. Although both species were similarly able to osmoregulate by means of organic solute accumulation (proline and sugars) in response to hypersalinity stress, higher carbon balance reductions were detected in P. oceanica plants from the deep meadow and in shallower C. nodosa plants, due to both photosynthetic inhibition and enhancement of respiration. None of these deleterious effects were found in C. nodosa plants form the deeper meadow. Leaf photosynthetic pigments generally increased in P. oceanica from both depths, but light absorbance capacities by leaves and photosynthetic efficiency followed contrasting patterns, increasing and decreasing in plants from the deep and the shallow meadows, respectively, indicating distinct strategies to cope with photosynthetic dysfunctions. Despite the significant reduction of pigments in the shallower C. nodosa plants, their leaves were able to increase their light capture capacities under hypersaline stress, by means of particular leaf optics adjustments (pigment packaging reduction). The metabolic costs as a consequence of the physiological plasticity integration seemed to compromise the vitality of P. oceanica, but not in the case of C. nodosa. These results confirm that both the inter- and intraspecific divergences play a key role in the responses which both Mediterranean seagrasses could develop under hypersaline stress conditions, and that these were consistent with their distinct ecological strategies and salinity tolerance ranges.


Assuntos
Alismatales/fisiologia , Salinidade , Estresse Fisiológico , Alismatales/crescimento & desenvolvimento , Alismatales/metabolismo , Carbono/metabolismo , Meio Ambiente , Mar Mediterrâneo , Fotossíntese/fisiologia , Pigmentos Biológicos/metabolismo , Tolerância ao Sal/fisiologia , Especificidade da Espécie
18.
Mar Pollut Bull ; 69(1-2): 165-71, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23465569

RESUMO

Marine fish farms could cause environmental disturbances on the sediment due to uneaten food and fish faeces that impact the marine benthos. Polychaete assemblages are considered good indicators of environmental perturbations. The present study aimed to establish groups of polychaetes as potential indicators of fish farm pollution. This study was carried out in ten fish farms along the Spanish coast. Changes in polychaete assemblage were analyzed with meta-analysis and multivariate techniques. Abundance, richness and diversity showed significant decreases under fish farm conditions. Distribution patterns of polychaetes responded to combinations of physicochemical variables. The main ones are sulfide concentration, silt and clays percentage, and stable nitrogen isotope ratio. The results showed that some families are tolerant, Capitellidae, Dorvilleidae, Glyceridae, Nereididae, Oweniidae and Spionidae; while others are sensitive to fish farm pollution, Magelonidae, Maldanidae, Nephtyidae, Onuphidae, Paralacydoniidae, Paraonide, Sabellidae and also Cirratulidae in spite of being reported as a tolerant family.


Assuntos
Aquicultura , Sedimentos Geológicos/química , Metanálise como Assunto , Poliquetos/classificação , Poluentes da Água/análise , Poluição da Água/estatística & dados numéricos , Animais , Biodiversidade , Monitoramento Ambiental , Peixes , Poliquetos/crescimento & desenvolvimento , Espanha
19.
Mar Environ Res ; 84: 60-75, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23306019

RESUMO

We studied the hypersaline stress responses of the Mediterranean seagrass Posidonia oceanica to determine if the species was tolerant to salinity increases that occur in coastal waters by the desalination industry. Water relations, amino acids, carbohydrates, ions, photosynthesis, respiration, chlorophyll a fluorescence, leaf growth and morphology, and plant mortality were analysed after exposing the mesocosm P. oceanica to a salinity level of 43 for one and three months followed by a month for recovery. One-month saline-stressed plants exhibited sub-lethal effects, including a leaf cell turgor pressure reduction, loss of ionic equilibrium and decreased leaf growth. There were also changes in photoprotective mechanisms, increased concentrations of organic osmolytes in leaves and reduced leaf ageing. All these dysfunctions recovered after removing the stress. After the longer exposure of three months, stress symptoms were much more acute and plants showed an excessive ionic exclusion capacity, increased leaf cell turgor, reduced plant carbon balance, increased leaf aging and leaf decay and increased plant mortality, which indicated that the plant had entered a stage of severe physiological stress. In addition, the long-term saline-stressed plants were not able to recover, still showing sustained injury after the one-month recovery period as reflected by unbalanced leaf ionic content, persistently impaired photosynthesis, decline in internal carbon resources and decreased leaf growth that resulted in undersized plants. In conclusion, P. oceanica was not able to acclimate to the saline conditions tested since it could not reach a new physiological equilibrium or recover after a chronic exposure of 3 months.


Assuntos
Alismatales/fisiologia , Salinidade , Estresse Fisiológico , Alismatales/química , Análise de Variância , Mar Mediterrâneo , Fotossíntese/fisiologia , Folhas de Planta/química , Folhas de Planta/fisiologia
20.
Environ Monit Assess ; 184(4): 2133-49, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21617967

RESUMO

Physicochemical characteristics of sediment and benthic communities were studied in the proximity of seven sewage outfalls with differences in flow and wastewater treatment in the Western Mediterranean Sea. Redox potential was the only abiotic parameter which showed a pattern related with distance to outfalls, whereas granulometry, percentage of organic matter, metal concentrations or pH did not show changes related with outfall presence. Benthic community analysis proved to be the most suitable monitoring tool. The results showed that the highest impacted stations corresponded with those closest to outfall with the highest flow and only pre-treatment, whilst a decrease of this tendency was detected in the locations where secondary treatment takes place. Meta-analysis showed a decrease of amphipods and tanaids abundance as well as redox potential, as the indicators with the clearest response to sewage presence.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Esgotos/análise , Mar Mediterrâneo , Metais Pesados/análise , Poluição da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...