Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
BMC Nephrol ; 25(1): 277, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198762

RESUMO

BACKGROUND: Exposure to extreme heat impacts millions of people worldwide and outdoor workers are among the populations most affected by hot temperatures. Heat stress induces several biological responses in humans, including the production of heat shock proteins (HSP) and antibodies against HSP (anti-HSP) which may play a central role in the body's cellular response to a hot environment. OBJECTIVE: This longitudinal study investigated the impact of elevated temperatures and humidity on the presence of HSP70 and anti-HSP70 and examined relationships with markers of kidney function in an at-risk workforce under conditions of extreme heat and exertion in Guatemala. METHODS: We collected ambient temperature and relative humidity data as well as biomarkers and clinical data from 40 sugarcane workers at the start and the end of a 6-month harvest. We used generalized mixed-effects models to estimate temperature effects on HSP70 and anti-HSP70 levels. In addition, we examined trends between HSP70 and anti-HSP70 levels and markers of kidney function across the harvest. RESULTS: At the end of the harvest, temperatures were higher, and workers had, on average, higher levels of HSP70 and anti-HSP70 compared to the beginning of the season. We observed significant increasing trends with temperature indices, heat index, and HSP70 levels. Maximum temperature was associated with HSP70 increments after controlling for age, systolic and diastolic blood pressure (ß: 0.21, 95% Confidence Interval: 0.09, 0.33). Kidney function decline across the harvest was associated with both higher levels of anti-HSP70 levels at the end of the harvest as well as greater increases in anti-HSP70 levels across the harvest. CONCLUSIONS: These results suggest that workplace heat exposure may increase the production of HSP70 and anti-HSP70 levels and that there may be a relationship between increasing anti-HSP70 antibodies and the development of renal injury. HSP70 holds promise as a biomarker of heat stress in exposed populations.


Assuntos
Biomarcadores , Fazendeiros , Proteínas de Choque Térmico HSP70 , Temperatura Alta , Exposição Ocupacional , Humanos , Proteínas de Choque Térmico HSP70/imunologia , Proteínas de Choque Térmico HSP70/sangue , Estudos Longitudinais , Masculino , Biomarcadores/sangue , Adulto , Feminino , Exposição Ocupacional/efeitos adversos , Temperatura Alta/efeitos adversos , Pessoa de Meia-Idade , Guatemala , Rim , Agricultura , Anticorpos/sangue , Transtornos de Estresse por Calor , Umidade
2.
Antioxidants (Basel) ; 13(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39061837

RESUMO

Metabolic syndrome (MetS) is a multifactorial condition that significantly increases the risk of cardiovascular disease and chronic kidney disease (CKD). Recent studies have emphasized the role of lipid dysregulation in activating cellular mechanisms that contribute to CKD progression in the context of MetS. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have demonstrated efficacy in improving various components of MetS, including obesity, dyslipidemia, and insulin resistance. While SGLT2i have shown cardioprotective benefits, the underlying cellular mechanisms in MetS and CKD remain poorly studied. Therefore, this review aims to elucidate the cellular mechanisms by which SGLT2i modulate lipid metabolism and their impact on insulin resistance, mitochondrial dysfunction, oxidative stress, and CKD progression. We also explore the potential benefits of combining SGLT2i with other antidiabetic drugs. By examining the beneficial effects, molecular targets, and cytoprotective mechanisms of both natural and synthetic SGLT2i, this review provides a comprehensive understanding of their therapeutic potential in managing MetS-induced CKD. The information presented here highlights the significance of SGLT2i in addressing the complex interplay between metabolic dysregulation, lipid metabolism dysfunction, and renal impairment, offering clinicians and researchers a valuable resource for developing improved treatment strategies and personalized approaches for patients with MetS and CKD.

3.
Biomol Biomed ; 24(6): 1441-1451, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-38907737

RESUMO

Diabetes mellitus (DM) is a chronic disease characterized by persistent hyperglycemia, which is a major contributing factor to chronic kidney disease (CKD), end-stage renal disease (ESRD), and cardiovascular-related deaths. There are several mechanisms leading to kidney injury, with hyperglycemia well known to stimulate oxidative stress, inflammation, tissue remodeling, and dysfunction in the vascular system and organs. Increased reactive oxygen species (ROS) decrease the bioavailability of vasodilators while increasing vasoconstrictors, resulting in an imbalance in vascular tone and the development of hypertension. Treatments for diabetes focus on controlling blood glucose levels, but due to the complexity of the disease, multiple drugs are often required to successfully delay the development of microvascular complications, including CKD. In this context, naringenin, a flavonoid found in citrus fruits, has demonstrated anti-inflammatory, anti-fibrotic, and antioxidant effects, suggesting its potential to protect the kidney from deleterious effects of diabetes. This review aims to summarize the scientific evidence of the effects of naringenin as a potential therapeutic option for diabetes-induced CKD.


Assuntos
Nefropatias Diabéticas , Flavanonas , Flavanonas/uso terapêutico , Flavanonas/farmacologia , Humanos , Nefropatias Diabéticas/tratamento farmacológico , Animais , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Substâncias Protetoras/uso terapêutico , Substâncias Protetoras/farmacologia , Insuficiência Renal Crônica/tratamento farmacológico
4.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37958859

RESUMO

Cardiorenal syndrome type 4 (CRS type 4) occurs when chronic kidney disease (CKD) leads to cardiovascular damage, resulting in high morbidity and mortality rates. Mitochondria, vital organelles responsible for essential cellular functions, can become dysfunctional in CKD. This dysfunction can trigger inflammatory responses in distant organs by releasing Damage-associated molecular patterns (DAMPs). These DAMPs are recognized by immune receptors within cells, including Toll-like receptors (TLR) like TLR2, TLR4, and TLR9, the nucleotide-binding domain, leucine-rich-containing family pyrin domain-containing-3 (NLRP3) inflammasome, and the cyclic guanosine monophosphate (cGMP)-adenosine monophosphate (AMP) synthase (cGAS)-stimulator of interferon genes (cGAS-STING) pathway. Activation of these immune receptors leads to the increased expression of cytokines and chemokines. Excessive chemokine stimulation results in the recruitment of inflammatory cells into tissues, causing chronic damage. Experimental studies have demonstrated that chemokines are upregulated in the heart during CKD, contributing to CRS type 4. Conversely, chemokine inhibitors have been shown to reduce chronic inflammation and prevent cardiorenal impairment. However, the molecular connection between mitochondrial DAMPs and inflammatory pathways responsible for chemokine overactivation in CRS type 4 has not been explored. In this review, we delve into mechanistic insights and discuss how various mitochondrial DAMPs released by the kidney during CKD can activate TLRs, NLRP3, and cGAS-STING immune pathways in the heart. This activation leads to the upregulation of chemokines, ultimately culminating in the establishment of CRS type 4. Furthermore, we propose using chemokine inhibitors as potential strategies for preventing CRS type 4.


Assuntos
Síndrome Cardiorrenal , Insuficiência Renal Crônica , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Mitocôndrias/metabolismo , Nucleotidiltransferases/metabolismo , Receptores Imunológicos/metabolismo , Alarminas/metabolismo , Quimiocinas/metabolismo , Insuficiência Renal Crônica/metabolismo
5.
PeerJ ; 11: e16132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37786577

RESUMO

Background: Recent studies have suggested that metabolic syndrome (MS) encompasses a group of risk factors for developing chronic kidney disease (CKD). This work aimed to evaluate the antioxidant and anti-inflammatory effects of allicin in the kidney from an experimental model of MS. Methods: Male Wistar rats (220-250 g) were used, and three experimental groups (n = 6) were formed: control (C), metabolic syndrome (MS), and MS treated with allicin (16 mg/Kg/day, gastric gavage) (MS+A). MS was considered when an increase of 20% in at least three parameters (body weight, systolic blood pressure (SBP), fasting blood glucose (FBG), or dyslipidemia) was observed compared to the C group. After the MS diagnosis, allicin was administered for 30 days. Results: Before the treatment with allicin, the MS group showed more significant body weight gain, increased SBP, and FBG, glucose intolerance, and dyslipidemia. In addition, increased markers of kidney damage in urine and blood. Moreover, the MS increased oxidative stress and inflammation in the kidney compared to group C. The allicin treatment prevented further weight gain, reduced SBP, FBG, glucose intolerance, and dyslipidemia. Also, markers of kidney damage in urine and blood were decreased. Further, the oxidative stress and inflammation were decreased in the renal cortex of the MS+A compared to the MS group. Conclusion: Allicin exerts its beneficial effects on the metabolic syndrome by considerably reducing systemic and renal inflammation as well as the oxidative stress. These effects were mediated through the Nrf2 pathway. The results suggest allicin may be a therapeutic alternative for treating kidney injury induced by the metabolic syndrome risk factors.


Assuntos
Intolerância à Glucose , Síndrome Metabólica , Insuficiência Renal Crônica , Ratos , Animais , Masculino , Antioxidantes/farmacologia , Síndrome Metabólica/tratamento farmacológico , Intolerância à Glucose/tratamento farmacológico , Ratos Wistar , Rim , Insuficiência Renal Crônica/tratamento farmacológico , Peso Corporal , Modelos Teóricos , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia
6.
Antioxidants (Basel) ; 12(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37627587

RESUMO

The incidence of kidney disease is increasing worldwide. Acute kidney injury (AKI) can strongly favor cardio-renal syndrome (CRS) type 3 development. However, the mechanism involved in CRS development is not entirely understood. In this sense, mitochondrial impairment in both organs has become a central axis in CRS physiopathology. This study aimed to elucidate the molecular mechanisms associated with cardiac mitochondrial impairment and its role in CRS development in the folic acid-induced AKI (FA-AKI) model. Our results showed that 48 h after FA-AKI, the administration of N-acetyl-cysteine (NAC), a mitochondrial glutathione regulator, prevented the early increase in inflammatory and cell death markers and oxidative stress in the heart. This was associated with the ability of NAC to protect heart mitochondrial bioenergetics, principally oxidative phosphorylation (OXPHOS) and membrane potential, through complex I activity and the preservation of glutathione balance, thus preventing mitochondrial dynamics shifting to fission and the decreases in mitochondrial biogenesis and mass. Our data show, for the first time, that mitochondrial bioenergetics impairment plays a critical role in the mechanism that leads to heart damage. Furthermore, NAC heart mitochondrial preservation during an AKI event can be a valuable strategy to prevent CRS type 3 development.

7.
Antioxidants (Basel) ; 12(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37237888

RESUMO

There is increasing evidence that either ingested or produced fructose may have a role in metabolic syndrome. While not commonly considered a criterion for metabolic syndrome, cardiac hypertrophy is often associated with metabolic syndrome, and its presence carries increased cardiovascular risk. Recently it has been shown that fructose and fructokinase C (KHK) can be induced in cardiac tissue. Here we tested whether diet-induced metabolic syndrome causes heart disease associated with increased fructose content and metabolism and whether it can be prevented with a fructokinase inhibitor (osthole). Male Wistar rats were provided a control diet (C) or high fat/sugar diet for 30 days (MS), with half of the latter group receiving osthol (MS+OT, 40 mg/kg/d). The Western diet increased fructose, uric acid, and triglyceride concentrations in cardiac tissue associated with cardiac hypertrophy, local hypoxia, oxidative stress, and increased activity and expression of KHK in cardiac tissue. Osthole reversed these effects. We conclude that the cardiac changes in metabolic syndrome involve increased fructose content and its metabolism and that blocking fructokinase can provide cardiac benefit through the inhibition of KHK with modulation of hypoxia, oxidative stress, hypertrophy, and fibrosis.

8.
Biomolecules ; 13(2)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36830641

RESUMO

Heat shock protein 70 (HSP70) production is a stress-generated cellular response with high interspecies homology. HSP70 has both chaperone and cytokine functions and may induce, depending on the context, tolerogenic anti-inflammatory reactivity or immunogenic and autoimmune reactivity. Intracellular (chaperoning transit of antigens to MHC in antigen-presenting cells) and extracellular HSP70-related effects are associated with hypertension, which is an inflammatory condition recognized as the most important risk factor for cardiovascular disease mortality. Here, we review (a) the relationship between HSP70, inflammation and immune reactivity, (b) clinical evidence relating to stress, HSP70 and anti-HSP70 reactivity with primary hypertension and (c) experimental data showing that salt-sensitive hypertension is associated with delayed hypersensitivity to HSP70. This is a consequence of anti-HSP70 reactivity in the kidneys and may be prevented and corrected by the T-cell-driven inhibition of kidney inflammation triggered by specific epitopes of HSP70. Finally, we discuss our postulate that lifelong stress signals and danger-associated molecular patterns stimulate HSP-70 and individual genetic and epigenetic characteristics determine whether the HSP70 response would drive inflammatory immune reactivity causing hypertension or, alternatively, would drive immunomodulatory responses that protect against hypertension.


Assuntos
Proteínas de Choque Térmico HSP70 , Hipertensão , Humanos , Proteínas de Choque Térmico HSP70/metabolismo , Hipertensão/metabolismo , Citocinas/metabolismo , Rim/metabolismo , Inflamação/metabolismo
9.
Med Oncol ; 40(3): 104, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36821013

RESUMO

Glioblastoma (GBM) is the most frequent brain cancer and more lethal than other cancers. Characteristics of this cancer are its high drug resistance, high recurrence rate and invasiveness. Invasiveness in GBM is related to overexpression of matrix metalloproteinases (MMPs) which are mediated by wnt/ß-catenin and induced by the activation of signaling pathways extracellularly activated by the cytokine neuroleukin (NLK) in cancer stem cells (CSC). Therefore, in this work we evaluated the effect of the tetrose saccharide, erythrose (Ery), a NLK inhibitor of invasiveness and drug sensitization in glioblastoma stem cells (GSC). GSC were obtained from parental U373 cell line by a CSC phenotype enrichment protocol based on microenvironmental stress conditions such as hypoxia, hipoglycemia, drug exposition and serum starvation. Enriched fraction of GSC overexpressed the typical markers of brain CSC: low CD133+ and high CD44; in addition, epithelial to mesenchyme transition (EMT) markers and MMPs were increased several times in GSC vs. U373 correlating with higher invasiveness, elongated and tubular mitochondrion and temozolomide (TMZ) resistance. IC50 of Ery was found at nM concentration and at 24 h induced a severe diminution of EMT markers, MMPs and invasiveness in GSC. Furthermore, the phosphorylation pattern of NLK after Ery exposition also was affected. In addition, when Ery was administered to GSC at subIC50, it was capable of reverting TMZ resistance at concentrations innocuous to non-tumor cancer cells. Moreover, Ery added daily induced the death of all GSC. Those findings indicated that the phytodrug Ery could be used as adjuvant therapy in GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Tetroses/metabolismo , Tetroses/farmacologia , Tetroses/uso terapêutico , Linhagem Celular Tumoral , Temozolomida/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Encefálicas/patologia , Células-Tronco Neoplásicas/patologia , Proteínas Serina-Treonina Quinases/metabolismo
10.
Antioxidants (Basel) ; 11(11)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36358567

RESUMO

Chronic kidney disease (CKD) prevalence is constantly increasing, and dyslipidemia in this disease is characteristic, favoring cardiovascular events. However, the mechanisms of CKD dyslipidemia are not fully understood. The use of curcumin (CUR) in CKD models such as 5/6 nephrectomy (5/6Nx) has shown multiple beneficial effects, so it has been proposed to correct dyslipidemia without side effects. This work aimed to characterize CUR's potential therapeutic effect on dyslipidemia and alterations in lipid metabolism and mitochondrial ß-oxidation in the liver and kidney in 5/6Nx. Male Wistar rats were subjected to 5/6Nx and progressed by 4 weeks; meanwhile, CUR (120 mg/kg) was administered for weeks 5 to 8. Our results showed that CUR reversed the increase in liver and kidney damage and hypertriglyceridemia induced by 5/6Nx. CUR also reversed mitochondrial membrane depolarization and ß-oxidation disorders in the kidney and the increased lipid uptake and the high levels of proteins involved in fatty acid synthesis in the liver and kidney. CUR also decreased lipogenesis and increased mitochondrial biogenesis markers in the liver. Therefore, we concluded that the therapeutic effect of curcumin on 5/6Nx hypertriglyceridemia is associated with the restoration of renal mitochondrial ß-oxidation and the reduction in lipid synthesis and uptake in the kidneys and liver.

11.
Antioxidants (Basel) ; 11(10)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36290577

RESUMO

Unilateral ureteral obstruction (UUO) is an animal rodent model that allows the study of obstructive nephropathy in an accelerated manner. During UUO, tubular damage is induced, and alterations such as oxidative stress, inflammation, lipid metabolism, and mitochondrial impairment favor fibrosis development, leading to chronic kidney disease progression. Sulforaphane (SFN), an isothiocyanate derived from green cruciferous vegetables, might improve mitochondrial functions and lipid metabolism; however, its role in UUO has been poorly explored. Therefore, we aimed to determine the protective effect of SFN related to mitochondria and lipid metabolism in UUO. Our results showed that in UUO SFN decreased renal damage, attributed to increased mitochondrial biogenesis. We showed that SFN augmented peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) and nuclear respiratory factor 1 (NRF1). The increase in biogenesis augmented the mitochondrial mass marker voltage-dependent anion channel (VDAC) and improved mitochondrial structure, as well as complex III (CIII), aconitase 2 (ACO2) and citrate synthase activities in UUO. In addition, lipid metabolism was improved, observed by the downregulation of cluster of differentiation 36 (CD36), sterol regulatory-element binding protein 1 (SREBP1), fatty acid synthase (FASN), and diacylglycerol O-acyltransferase 1 (DGAT1), which reduces triglyceride (TG) accumulation. Finally, restoring the mitochondrial structure reduced excessive fission by decreasing the fission protein dynamin-related protein-1 (DRP1). Autophagy flux was further restored by reducing beclin and sequestosome (p62) and increasing B-cell lymphoma 2 (Bcl2) and the ratio of microtubule-associated proteins 1A/1B light chain 3 II and I (LC3II/LC3I). These results reveal that SFN confers protection against UUO-induced kidney injury by targeting mitochondrial biogenesis, which also improves lipid metabolism.

12.
Metabolites ; 12(10)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36295838

RESUMO

Kidney diseases encompass many pathologies, including obstructive nephropathy (ON), a common clinical condition caused by different etiologies such as urolithiasis, prostatic hyperplasia in males, tumors, congenital stenosis, and others. Unilateral ureteral obstruction (UUO) in rodents is an experimental model widely used to explore the pathophysiology of ON, replicating vascular alterations, tubular atrophy, inflammation, and fibrosis development. In addition, due to the kidney's high energetic demand, mitochondrial function has gained great attention, as morphological and functional alterations have been demonstrated in kidney diseases. Here we explore the kidney mitochondrial proteome differences during a time course of 7, 14, and 21 days after the UUO in rats, revealing changes in proteins involved in three main metabolic pathways, oxidative phosphorylation (OXPHOS), the tricarboxylic acid cycle (TCA), and the fatty acid (FA) metabolism, all of them related to bioenergetics. Our results provide new insight into the mechanisms involved in metabolic adaptations triggered by the alterations in kidney mitochondrial proteome during the ON.

13.
Antioxidants (Basel) ; 11(2)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35204238

RESUMO

Chronic kidney disease (CKD) is a world health problem increasing dramatically. The onset of CKD is driven by several mechanisms; among them, metabolic reprogramming and changes in redox signaling play critical roles in the advancement of inflammation and the subsequent fibrosis, common pathologies observed in all forms of CKD. Extracellular vesicles (EVs) are cell-derived membrane packages strongly associated with cell-cell communication since they transfer several biomolecules that serve as mediators in redox signaling and metabolic reprogramming in the recipient cells. Recent studies suggest that EVs, especially exosomes, the smallest subtype of EVs, play a fundamental role in spreading renal injury in CKD. Therefore, this review summarizes the current information about EVs and their cargos' participation in metabolic reprogramming and mitochondrial impairment in CKD and their role in redox signaling changes. Finally, we analyze the effects of these EV-induced changes in the amplification of inflammatory and fibrotic processes in the progression of CKD. Furthermore, the data suggest that the identification of the signaling pathways involved in the release of EVs and their cargo under pathological renal conditions can allow the identification of new possible targets of injury spread, with the goal of preventing CKD progression.

14.
Life Sci ; 289: 120227, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34921866

RESUMO

BACKGROUND: Ischemic kidney injury is a common clinical condition resulting from transient interruption of the kidney's normal blood flow, leading to oxidative stress, inflammation, and kidney dysfunction. The ketogenic diet (KD), a low-carbohydrate, high-fat diet that stimulates endogenous ketone body production, has potent antioxidant and anti-inflammatory effects in distinct tissues and might thus protect the kidney against ischemia and reperfusion (IR) injury. MAIN METHODS: Male Wistar rats were fed a KD or a control diet (CD) for three days before analyzing metabolic parameters or testing nephroprotection. We used two different models of kidney IR injury and conducted biochemical, histological, and Western blot analyses at 24 h and two weeks after surgery. KEY FINDINGS: Acute KD feeding caused protein acetylation, liver AMPK activation, and increased resistance to IR-induced kidney injury. At 24 h after IR, rats on KD presented reduced tubular damage and improved kidney functioning compared to rats fed with a CD. KD attenuated oxidative damage (protein nitration, 4-HNE adducts, and 8-OHdG), increased antioxidant defenses (GPx and SOD activity), and reduced inflammatory intermediates (IL6, TNFα, MCP1), p50 NF-κB expression, and cellular infiltration. Also, KD prevented interstitial fibrosis development at two weeks, up-regulation of HSP70, and chronic Klotho deficiency. SIGNIFICANCE: Our findings demonstrate for the first time that short-term KD increases tolerance to experimental kidney ischemia, opening the opportunity for future therapeutic exploration of a dietary preconditioning strategy to convey kidney protection in the clinic.


Assuntos
Dieta Cetogênica , Regulação da Expressão Gênica , Estresse Oxidativo , Insuficiência Renal Crônica , Animais , Biomarcadores/metabolismo , Inflamação/dietoterapia , Inflamação/metabolismo , Inflamação/patologia , Isquemia/dietoterapia , Isquemia/metabolismo , Isquemia/patologia , Masculino , Ratos , Ratos Wistar , Insuficiência Renal Crônica/dietoterapia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia
15.
Free Radic Biol Med ; 172: 358-371, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34175439

RESUMO

Renal fibrosis is a well-known mechanism that favors chronic kidney disease (CKD) development in obstructive nephropathy, a significant pathology worldwide. Fibrosis induction involves several pathways, and although mitochondrial alterations have recently emerged as a critical factor that triggers renal damage in the obstructed kidney, the temporal mitochondrial alterations during the fibrotic induction remain unexplored. Therefore, in this work, we evaluated the time course of mitochondrial mass and bioenergetics alterations induced by a unilateral ureteral obstruction (UUO), a widely used model to study the mechanism involved in kidney fibrosis induction and progression. Our results show a marked reduction in mitochondrial oxidative phosphorylation (OXPHOS) in the obstructed kidney on days 7 to 28 of obstruction without significant mitochondrial coupling changes. Besides, we observed that mitochondrial mass was reduced, probably due to decreased biogenesis and mitophagy induction. OXPHOS impairment was associated with decreased mitochondrial biogenesis markers, the peroxisome proliferator-activated receptor γ co-activator-1alpha (PGC-1α), and nuclear respiratory factor 1 (NRF1); and also, with the induction of mitophagy in a PTEN-induced kinase 1 (PINK1) and Parkin independent way. It is concluded that the impairment of OXPHOS capacity may be explained by the reduction in mitochondrial biogenesis and the induction of mitophagy during fibrotic progression.


Assuntos
Obstrução Ureteral , Animais , Fibrose , Mitocôndrias , Mitofagia , Biogênese de Organelas , Ratos
16.
Biology (Basel) ; 10(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919054

RESUMO

The five-sixth nephrectomy (5/6Nx) model is widely used to study the mechanisms involved in chronic kidney disease (CKD) progression. Mitochondrial impairment is a critical mechanism that favors CKD progression. However, until now, there are no temporal studies of the change in mitochondrial biogenesis and dynamics that allow determining the role of these processes in mitochondrial impairment and renal damage progression in the 5/6Nx model. In this work, we determined the changes in mitochondrial biogenesis and dynamics markers in remnant renal mass from days 2 to 28 after 5/6Nx. Our results show a progressive reduction in mitochondrial biogenesis triggered by reducing two principal regulators of mitochondrial protein expression, the peroxisome proliferator-activated receptor-gamma coactivator 1-alpha and the peroxisome proliferator-activated receptor alpha. Furthermore, the reduction in mitochondrial biogenesis proteins strongly correlates with the increase in renal damage markers. Additionally, we found a slow and gradual change in mitochondrial dynamics from fusion to fission, favoring mitochondrial fragmentation at later stages after 5/6Nx. Together, our results suggest that 5/6Nx induces the progressive reduction in mitochondrial mass over time via the decrease in mitochondrial biogenesis factors and a slow shift from mitochondrial fission to fusion; both mechanisms favor CKD progression in the remnant renal mass.

17.
Int J Mol Sci ; 22(5)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33670975

RESUMO

Excessive intake of fructose results in metabolic syndrome (MS) and kidney damage, partly mediated by its metabolism by fructokinase-C or ketohexokinase-C (KHK-C). Osthol has antioxidant properties, is capable of regulating adipogenesis, and inhibits KHK-C activity. Here, we examined the potential protective role of osthol in the development of kidney disease induced by a Western (high-fat/high-sugar) diet. Control rats fed with a high-fat/high-sugar diet were compared with two groups that also received two different doses of osthol (30 mg/kg/d or 40 mg/kg/d body weight BW). A fourth group served as a normal control and received regular chow. At the end of the follow-up, kidney function, metabolic markers, oxidative stress, and lipogenic enzymes were evaluated. The Western diet induced MS (hypertension, hyperglycemia, hypertriglyceridemia, obesity, hyperuricemia), a fall in the glomerular filtration rate, renal tubular damage, and increased oxidative stress in the kidney cortex, with increased expression of lipogenic enzymes and increased kidney KHK expression. Osthol treatment prevented the development of MS and ameliorated kidney damage by inhibiting KHK activity, preventing oxidative stress via nuclear factor erythroid 2-related factor (Nrf2) activation, and reducing renal lipotoxicity. These data suggest that the nutraceutical osthol might be an ancillary therapy to slow the progression of MS and kidney damage induced by a Western diet.


Assuntos
Cumarínicos/farmacologia , Dieta Ocidental/efeitos adversos , Frutoquinases/antagonistas & inibidores , Nefropatias/prevenção & controle , Síndrome Metabólica/prevenção & controle , Animais , Cumarínicos/uso terapêutico , Dieta da Carga de Carboidratos/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Frutoquinases/metabolismo , Frutose/metabolismo , Nefropatias/etiologia , Nefropatias/metabolismo , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Ratos , Ratos Wistar
18.
Antioxidants (Basel) ; 9(11)2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33203103

RESUMO

This study aimed to assess the impact of allicin on the course of diabetic nephropathy. Study groups included control, diabetes, and diabetes-treated rats. Allicin treatment (16 mg/kg day/p.o.) started after 1 month of diabetes onset and was administered for 30 days. In the diabetes group, the systolic blood pressure (SBP) increased, also, the oxidative stress and hypoxia in the kidney cortex were evidenced by alterations in the total antioxidant capacity as well as the expression of nuclear factor (erythroid-derived 2)-like 2/Kelch ECH associating protein 1 (Nrf2/Keap1), hypoxia-inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor (VEGF), erythropoietin (Epo) and its receptor (Epo-R). Moreover, diabetes increased nephrin, and kidney injury molecule-1 (KIM-1) expression that correlated with mesangial matrix, the fibrosis index and with the expression of connective tissue growth factor (CTGF), transforming growth factor-ß1 (TGF-ß1), and α-smooth muscle actin (α-SMA). The insulin levels and glucose transporter protein type-4 (GLUT4) expression were decreased; otherwise, insulin receptor substrates 1 and 2 (IRS-1 and IRS-2) expression was increased. Allicin increased Nrf2 expression and decreased SBP, Keap1, HIF-1α, and VEGF expression. Concurrently, nephrin, KIM-1, the mesangial matrix, fibrosis index, and the fibrotic proteins were decreased. Additionally, allicin decreased hyperglycemia, improved insulin levels, and prevented changes in (GLUT4) and IRSs expression induced by diabetes. In conclusion, our results demonstrate that allicin has the potential to help in the treatment of diabetic nephropathy. The cellular mechanisms underlying its effects mainly rely on the regulation of antioxidant, antifibrotic, and antidiabetic mechanisms, which can contribute towards delay in the progression of renal disease.

19.
Int J Mol Sci ; 21(18)2020 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-32899919

RESUMO

Five-sixths nephrectomy (5/6Nx) model is widely used for studying the mechanisms involved in chronic kidney disease (CKD) progression, a kidney pathology that has increased dramatically in recent years. Mitochondrial impairment is a key mechanism that aggravates CKD progression; however, the information on mitochondrial bioenergetics and redox alterations along a time course in a 5/6Nx model is still limited and in some cases contradictory. Therefore, we performed for the first time a time-course study of mitochondrial alterations by high-resolution respirometry in the 5/6Nx model. Our results show a decrease in mitochondrial ß-oxidation at early times, as well as a permanent impairment in adenosine triphosphate (ATP) production in CI-linked respiration, a permanent oxidative state in mitochondria and decoupling of these organelles. These pathological alterations are linked to the early decrease in complex I and ATP synthase activities and to the further decrease in complex III activity. Therefore, our results may suggest that mitochondrial bioenergetics impairment is an early event in renal damage, whose persistence in time aggravates CKD development in the 5/6Nx model.


Assuntos
Mitocôndrias/metabolismo , Nefrectomia/efeitos adversos , Estresse Oxidativo/fisiologia , Insuficiência Renal Crônica , Animais , Progressão da Doença , Metabolismo Energético , Hemodinâmica/fisiologia , Rim/irrigação sanguínea , Rim/metabolismo , Rim/patologia , Rim/cirurgia , Masculino , Mitocôndrias/patologia , Nefrectomia/métodos , Oxirredução , Consumo de Oxigênio/fisiologia , Complicações Pós-Operatórias/metabolismo , Complicações Pós-Operatórias/patologia , Ratos , Ratos Wistar , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Fatores de Tempo
20.
Free Radic Biol Med ; 154: 75-83, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32376457

RESUMO

Food restriction improves metabolic health and increases resistance to stress in experimental animals. However, most studies have focused on long-term dietary restriction protocols consisting of several weeks or months of limited food ingestion. Here it was investigated the impact of 2-h time-restricted feeding (TRF) for one week on stress resistance in a rat model of kidney injury induced by ischemia and reperfusion (IR). At baseline, TRF reduced blood glucose, increased ß-hydroxybutyrate and improved body composition in male Wistar rats. Importantly, implementing the one-week TRF schedule before ischemia significantly improved renal function, suppressed tubular injury, prevented the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and inhibited the development of interstitial fibrosis. These benefits were related to increased antioxidant protection, reduction in dynamin-related protein 1 (DRP1)-mediated mitochondrial fragmentation and modulation of the mitochondrial unfolded protein response (UPRmt). Specifically, preoperative TRF boosted the activation of the UPRmt in the acute phase after renal IR while promoted its resolution at the stage of fibrosis. Our study indicates that dietary preconditioning by short-term TRF improves the outcome of renal IR injury, and suggests that an optimal intervention that promotes kidney protection may not necessarily require adherence to restrictive diets for prolonged periods of time.


Assuntos
Nefropatias , Traumatismo por Reperfusão , Animais , Rim/metabolismo , Nefropatias/etiologia , Nefropatias/metabolismo , Nefropatias/prevenção & controle , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Resposta a Proteínas não Dobradas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA