Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(47): 9944-9958, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37964533

RESUMO

Perylenediimide molecules constitute a family of chromophores that undergo singlet fission, a process in which an excited singlet state converts into lower energy triplets on two neighboring molecules, potentially increasing the efficiency of organic solar cells. Here, the nonorthogonal configuration interaction method is applied to study the effect of the different crystal packing of various perylenediimide derivatives on the relative energies of the singlet and triplet states, the intermolecular electronic couplings, and the relative rates for singlet fission. The analysis of the wave functions and electronic couplings reveals that charge transfer states play an important role in the singlet fission mechanism. Dimer conformations where the PDI molecules are at large displacements along the long axis and short on the short axis are posed as the most favorable for singlet fission. The role of the substituent at the imide group has been inspected concluding that, although it has no effect in the energies, for some conformations it significantly influences the electronic couplings, and therefore, replacing this substituent with hydrogen may introduce artifacts in the computational modeling of the PDI molecules.

2.
Phys Chem Chem Phys ; 24(19): 11931-11944, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35521680

RESUMO

Two different approaches have been implemented to include the effect of dynamic electron correlation in the Non-Orthogonal Configuration Interaction for Fragments (NOCI-F) method. The first is based on shifting the diagonal matrix elements of the NOCI matrix, while the second incorporates the dynamic correlation explicitly in the fragment wave functions used to construct the many-electron basis functions of the NOCI. The two approaches are illustrated for the calculation of the electronic coupling relevant in singlet fission and the coupling of spin moments in organic radicals. Comparison of the calculated diabatic couplings, the NOCI energies and wave functions shows that dynamic electron correlation is not only efficiently but also effectively incorporated by the shifting approach and can largely affect the coupling between electronic states. Also, it brings the NOCI coupling of the spin moments in close agreement with benchmark calculations.

3.
J Chem Theory Comput ; 18(6): 3549-3565, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35640094

RESUMO

GronOR is a program package for nonorthogonal configuration interaction calculations. Electronic wave functions are constructed in terms of antisymmetrized products of multiconfiguration molecular fragment wave functions. The computational complexity of the nonorthogonal methodologies implemented in GronOR applied to large molecular assemblies requires a design that takes full advantage of massively parallel supercomputer architectures and accelerator technologies. This work describes the implementation strategy and resulting performance characteristics. In addition to parallelization and acceleration, the software development strategy includes aspects of fault resiliency and heterogeneous computing. The program was designed for large-scale supercomputers but also runs effectively on small clusters and workstations for small molecular systems. GronOR is available as open source to the scientific community.


Assuntos
Computadores , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...