Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(50): 10717-10731, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38084088

RESUMO

Electronic couplings in intermolecular electron and energy transfer processes calculated by six different existing computational techniques are compared to nonorthogonal configuration interaction for fragments (NOCI-F) results. The paper addresses the calculation of the electronic coupling in diketopyrrolopyrol, tetracene, 5,5'-difluoroindigo, and benzene-Cl for hole and electron transport, as well as the local exciton and singlet fission coupling. NOCI-F provides a rigorous computational scheme to calculate these couplings, but its computational cost is rather elevated. The here-considered ab initio Frenkel-Davydov (AIFD), Dimer projection (DIPRO), transition dipole moment coupling, Michl-Smith, effective Hamiltonian, and Mulliken-Hush approaches are computationally less demanding, and the comparison with the NOCI-F results shows that the NOCI-F results in the couplings for hole and electron transport are rather accurately predicted by the more approximate schemes but that the NOCI-F exciton transfer and singlet fission couplings are more difficult to reproduce.

2.
J Phys Chem C Nanomater Interfaces ; 127(33): 16249-16258, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37811311

RESUMO

The present computational work analyzes singlet fission (SF) as a pathway for multiplication of photogenerated excitons in crystalline polyacenes. Our study explores the well-known crystalline pentacene (C22H14) and the prospective and potentially interesting doped B,N-pentacene (BC20NH14). At the molecular level, the singlet fission process involves a pair of neighboring molecules and is based on the coupling between an excited singlet state (S1S0) and two singlet-coupled triplets (1T1T1), which, typically, is influenced by an intermolecular charge transfer state. Taking data from periodic density functional theory and ab initio wave function calculations, we applied the non-orthogonal configuration interaction method to determine electronic coupling parameters. The comparison of the results for both equilibrium structures reveal smaller SF coupling for pentacene than for B,N-pentacene by a factor of ∼5. Introduction of the dynamic behavior to the crystals (vibrations, thermal motion) provides a more realistic picture of the effect of the disorder at the molecular level on the SF efficiency. The coupling values associated to out-of-equilibrium structures show that most of the S1S0/1T1T1 couplings remain virtually constant or slightly increase for pentacene when molecular disorder is introduced. Homologous calculations on B,N-pentacene show a generalized decrease in the coupling values, notably if large phonon displacements are considered. A few of the structures analyzed feature much larger SF coupling if some distortion results in (nearly) degenerate charge transfer and excited singlet and triplet states. For these particular situations, an acceleration of the SF process could occur although in competition with electron-hole separation as an alternative pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...